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Abstract

Quite recently the polynomial design methods found a new great field of application outside the
control area: the algebraic approach have been used successfully in signal processing and mobile
communications. In contrast to the control systems synthesis, polynomials and polynomial matrices
with complex coefficients are often required when designing filters, equalizers, decouplers and other
components of mobile phones for instance.

Polynomial Toolbox for MATLAB admits complex polynomials in most computations, including
Diophantine equations and spectral factorizations. As a result, the toolbox appears a suitable tool
for rapid prototyping whenever polynomial design routines with complex coefficients are required.

The objective of this report is twofold. First we would like to explain in a clear and popular
manner how the complex coefficients arise in technical practice. Based on this motivation, we will
present important numerical algorithms for complex polynomials and polynomial matrices and their
implementation in the Polynomial Toolbox for MATLAB. The power of the Toolbox will be illustrated
by selected numerical examples involving complex coefficients finally.

1 Introduction

The polynomial or algebraic methods constitute the third basic class of control systems design procedures,
next to the classical frequency routines and state-space techniques.

The origin of the polynomial concept is dated back to the early 70s. Systems are described by
input-output relations, however, the transfer functions are not regarded as functions of complex variable
but as algebraic objects. Design procedures are then reduced to algebraic operations with polynomials
and polynomial matrices, typically to solving algebraic polynomial equations and polynomial spectral
factorizations. This approach not only enables to resolve many existing control problems in a more
elegant and unifying way but also provides further insight into the structure of control systems and
shows new relationships between various control tasks [13]. Moreover, relying on input-output relations
only, polynomial methods often appear more transparent and straightforward compared to state-space
routines.

Within the control community there is no need to take polynomial matrices with complex coefficients
into account in fact. That is also why the great majority of research results on polynomial methods,
including numerical algorithms, concern just the real case as a rule.

However, the ideas of the algebraic approach to control systems synthesis have recently been success-
fully applied also in problems out of the control area, namely in signals and communications [7, 8], and
many of such problems naturally call for polynomials and polynomial matrices with complex coefficients.
Speaking in broad terms, complex entries are able to carry twofold information about particular signal
module and phase which is often desirable. For example, several mobile radio communication filtering
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algorithms rely upon complex polynomials and solutions of related equations [2]. Vibrational systems and
filters are additional examples of systems whose models involve complex coefficients [1]. When applying
the algebraic design methods in these cases, solutions to linear and quadratic polynomial equations are
sought.

The report is organized as follows. In the first section, relevance of complex polynomials in real-world
problems is illustrated by an example of the mobile radio communication channel. Description of algo-
rithms for Diophantine equations and spectral factorizations over complex polynomials and polynomial
matrices which are implemented in the Polynomial Toolbox then follows. Finally, illustrative numerical
examples involving complex coefficients are resolved using the Polynomial Toolbox functions.

2 Complex Coefficients in Communications

In this section the structure of the mobile radio communication channel is presented along with the way
the complex valued polynomials are introduced. The facts presented here are mainly adopted from [2].

Basically, there are two reasons for going into complex computations. First, it often appears convenient
to code the bitstream to be transmitted into complex numbers and send their real and imaginary parts
using the same frequency range. Such a way, the bandwidth reserved for the channel is more efficiently
exploited. However, even if the transmitted symbols are real, the amplitude response of the overall
communication channel can become asymmetrical around the carrier frequency if interference or multipath
propagation occurs, giving rise to a complex transfer function in the baseband representation. These
effects will be thoroughly described further.

2.1 The Radio Transmission System

The radio communication channel typically consists of three parts: the transmitter, radio frequency (RF)
channel and a receiver. The transmitter accepts data - time series of bits - from a source and transforms it
in a form suitable for transmitting via the RF channel, typically to a band-limited continuous-time signal.
The channel adds noise to the input signal and acts as a filter on the transmitted data. Therefore, the
receiver cannot be just a pure ”reverse” of the transmitter but in addition it has to process the received
signal to remove distortion introduced by the RF channel.

In the transmitter, the bit stream to be sent is divided into groups of bits which form digital symbols
- real or complex numbers. By forming symbols, several bits can be transmitted at the same time.

As the signal for the radio channel must be continuous both in time and amplitude, the digital
symbols are pulse-shaped first. This pulse-shaping is performed by a lowpass filter with a spectrum
efficient impulse response p(t). Such a way, the sequence of symbols {uk} is transformed in a sequence
of continuous-time pulses

sb(t) =
N∑

k=1

ukp(t− kTs)

where 1/Ts is the symbol rate. This signal is real valued whenever the symbols accepted are real and
complex otherwise.

After pulse shaping, the modulation follows: the spectrum of sb(t) (the baseband signal) is shifted
to a high frequency band suitable for transmission. For both real and complex valued symbols, the
modulation can be accomplished by multiplying the baseband signal sb(t) by a complex-valued carrier
ejωct and transmitting the real part of corresponding signal:

sp(t) = Re{sb(t)ejωct} = Re{sb(t)} cos ωct− Im{sb(t)} sinωct (1)

At this point, the ineffectiveness of real-valued symbols for transmitting information which was men-
tioned earlier can be clarified: Since the spectrum Sb(ω) of real-valued baseband signal sb(t) resulting
from real symbols uk is symmetric with respect to ω = 0, related passband signal Sp(ω) is symmetric
around ωc. Hence all information carried by sp(t) is contained only in one half of the devoted bandwidth,
see Figure 1a. On the contrary, once we allow complex symbols, the symmetries of spectra Sb(ω) and
Sp(ω) disappear and the transmitted information is spread over all frequencies allocated in the reserved
bandwidth (Figure 1b). Technically, this is accomplished by employing two orthogonal carriers cos ωct
and − sinωct for transmitting real and imaginary parts of the symbols, see formula (1).

The RF channel is a link between the transmitter and the receiver. The passband signal is carried by
electromagnetic waves. However, the space between the transmitter and receiver station often contains
obstacles such as buildings, mountains, etc. In addition, the waves are reflected and scattered when



touching grounds or other objects, namely if the the carrier frequency is high. As a result, signals
which traverse different paths reach the receiver at different times. This property is called the delay
spread. These effects cause that the transfer function describing the radio channel will in general not
be flat within the spectrum of the transmitted passband signal sp(t) and will distort it accordingly, see
Figure 2. Hence the baseband representation of the received signal becomes nonsymmetric around ω = 0
even if the transmitted sequence is real-valued. This implies that the transfer function of the baseband
representation of the channel features complex coefficients.

It is clear now that the role of the receiver is twofold. First of all, reversed versions of all operations
performed by the transmitter are to be applied. In case the channel were ideally perfect, the desired
submitted symbols would be exactly recovered.

However, as we tried to explain above, in reality the received and transmitted symbols differ. Hence
some additional manipulations with the set of received symbols have to follow to eliminate the imperfec-
tions of radio transmission. This problem can be mathematically formulated as an optimization task. For
computational reasons, the cost criterion is often chosen as a quadratic form of involved signals. In that
case the whole theory of Wiener and Kalman filtering can be directly applied. In addition the overall
communication channel is usually described by its transfer function as a ratio of two polynomials. Then
the polynomial methods for control systems design can be easily adopted. The main difference compared
to the control theory is that complex polynomials are often addressed.

2.2 Designing Filters for Mobile Communications

Many results on applying polynomial design methods in filters and equalizers for mobile communications
have been achieved by the Signals and Systems Group at the University of Uppsala which also cooperates
with the PolyX Ltd. closely. Their algorithms based on polynomial approach for LQ optimal feedforward
filters and LQ optimal decision feedback equalizers have been applied by the Ericsson company in their
phones for instance. An interested reader is referred to [3], [4], [5]
(http://www.signal.uu.se/Publications/pbookch.html) for detailed description of particular procedures.

As one can check, the crucial computational parts of all the papers cited above are the Diophan-
tine equations, often two-sided and symmetric, and polynomial spectral factorizations. And not only
scalar complex polynomials but also complex polynomial matrices are of interest to tackle more complex
problems of mobile communications involving multiple-antenna arrays for instance [6].

In the next sections we will demonstrate that the Polynomial Toolbox is capable to resolve such
advanced tasks.

3 Polynomial Toolbox and Complex Coefficients

In the previous sections, the importance of polynomials with complex coefficients in communications was
enlightened and numerical algorithms for most advanced computations were presented. Now some partic-
ular linear equations and spectral factorization problems involving complex polynomials and polynomial
matrices of various degree and size will be resolved using the Polynomial Toolbox for MATLAB.

3.1 Diophantine Equations

The Polynomial Toolbox provides nine solvers for various kinds of linear (matrix) polynomial equations.
We will concentrate on two in practice most important types: the symmetric equation A∗X + X∗A = B
and one-sided Diophantine equation AX + BY = C.

First let us create a 3-by-3 polynomial matrix A in variable ’z’ of degree 4 with complex coefficients
using the Polynomial Toolbox prand command:

>> A = prand(5,5,’z’) + prand(5,5,’z’)*j

Polynomial matrix in z: 5-by-5, degree: 5

A =

Column 1

1.6-0.046i + (0.28-0.3i)z + (1.5+0.42i)z^2 + (-0.74-0.56i)z^3 + (0.68+0.64i)z^4 + (0.5+0.86i)z^5

0.45-2.5i + (1.3-0.19i)z + (-0.57+0.068i)z^2 + (-1.5+0.85i)z^3 + (0.85+0.46i)z^4 + (-0.75-2.1i)z^5

0.21+0.22i + (-0.082-0.23i)z + (-0.15+0.77i)z^2 + (-0.29+1.1i)z^3 + (-0.38-0.83i)z^4 + (0.57+2.1i)z^5

1-0.39i + (-0.1-1i)z + (0.22+0.085i)z^2 + (0.53-0.33i)z^3 + (3.1-1.1i)z^4 + (1.2-0.1i)z^5

0.27-0.24i + (-0.88-0.63i)z + (-0.12-0.7i)z^2 + (0.82-0.39i)z^3 + (-0.89-0.45i)z^4 + (-0.43+0.95i)z^5

Column 2

-0.43-0.22i + (2-0.69i)z + (-1.1+0.27i)z^2 + (1.1-0.12i)z^3 + (0.43-0.56i)z^4 + (-0.57-0.99i)z^5



0.83+0.88i + (-0.058-0.81i)z + (0.2-0.98i)z^2 + (0.66-1i)z^3 + (-0.63+1.2i)z^4 + (0.88-0.95i)z^5

-0.45-0.24i + (0.66+0.25i)z + (0.6+1.1i)z^2 + (1.1+1.4i)z^3 + (0.49-1.2i)z^4 + (1.8+0.044i)z^5

0.76-0.081i + (-0.001+0.36i)z + (0.53-0.023i)z^2 + (-0.19-0.12i)z^3 + (1.4+3.7i)z^4 + (0.74+1.1i)z^5

0.29+0.72i + (-0.66+0.23i)z + (1.8+0.71i)z^2 + (-0.69+0.72i)z^3 + (0.17-0.36i)z^4 + (-0.19+1.2i)z^5

Column 3

-1.5+0.36i + (0.84-1.4i)z + (-2+2.4i)z^2 + (0.26-1.2i)z^3 + (-0.029-0.021i)z^4 + (0.81-1.4i)z^5

2.4+0.77i + (0.17-2.5i)z + (-0.18-1.5i)z^2 + (-0.47-1.3i)z^3 + (-0.93-0.12i)z^4 + (-2.7-1.2i)z^5

-0.026-1.5i + (0.96+1.6i)z + (-1.4-0.36i)z^2 + (-0.097+1.6i)z^3 + (-1.5-0.013i)z^4 + (-0.076-1.5i)z^5

0.34-0.85i + (0.066+0.98i)z + (0.52+0.13i)z^2 + (0.059-1.3i)z^3 + (-1-0.49i)z^4 + (0.049-0.23i)z^5

-1.9-0.37i + (0.61-0.069i)z + (0.4+1.1i)z^2 + (0.61-1.1i)z^3 + (-1.6+0.6i)z^4 + (-0.38-0.35i)z^5

Column 4

-0.011-0.9i + (-1.1-2.1i)z + (0.12+0.77i)z^2 + (-0.98+1.6i)z^3 + (1.4-0.18i)z^4 + (-0.14+0.021i)z^5

0.1+1.6i + (0.65+0.38i)z + (-0.026+0.39i)z^2 + (0.35-0.053i)z^3 + (-1.8+0.24i)z^4 + (-1.6-1.2i)z^5

0.2+0.19i + (0.41-2.9i)z + (-0.12+0.28i)z^2 + (2.2-0.28i)z^3 + (0.011+1i)z^4 + (0.58-1.8i)z^5

-2.5+0.88i + (-0.29-0.63i)z + (-0.5+1i)z^2 + (0.58-0.54i)z^3 + (-0.77+0.0014i)z^4 + (0.21-0.52i)z^5

1.4-1.5i + (0.53+2.3i)z + (0.16+0.15i)z^2 + (-2.2-0.76i)z^3 + (1.1-1.5i)z^4 + (-0.23+0.1i)z^5

Column 5

-0.81-0.14i + (0.32-0.98i)z + (0.00072+0.22i)z^2 + (-1.2-0.25i)z^3 + (0.79+1.2i)z^4 + (1.8-0.3i)z^5

0.39+1.4i + (-2-1.3i)z + (1.2-0.16i)z^2 + (0.65+0.11i)z^3 + (-0.06-1.1i)z^4 + (-1.2-1.7i)z^5

1+0.059i + (1.5+0.67i)z + (-1.1-0.92i)z^2 + (-0.63-0.66i)z^3 + (-1.3-0.25i)z^4 + (-1.5+0.56i)z^5

-0.68-0.0068i + (0.085+0.37i)z + (0.36-0.14i)z^2 + (-0.48-0.25i)z^3 + (-1.5+0.88i)z^4 + (1.3-0.75i)z^5

0.5+1.5i + (0.37+0.74i)z + (0.41-1.2i)z^2 + (-0.52+0.32i)z^3 + (-0.46-0.81i)z^4 + (0.59+0.46i)z^5

Similarly, a discrete-time symmetric 3-by-3 matrix B of degree 8 is created:

>> B = prand(5,5,’z’) + prand(5,5,’z’)*j;

>> B = B*B’;

Solution of related discrete-time symmetric polynomial equation A∗X + X∗A = B can be achieved
by calling the Polynomial Toolbox axxab command:

>> X = axxab(A,B)

Polynomial matrix in z: 5-by-5, degree: 5

X =

Column 1

2.8e+002+0i + (-38-1.5e+002i)z + (-74-3.4e+002i)z^2 + (-31-3e+002i)z^3 + ...

(2.5e+002+51i)z + (-50-42i)z^2 + (2.4e+002-1.7e+002i)z^3 + ...

(7.6e+002+3.1e+002i)z + (79+7.3e+002i)z^2 + (-40+93i)z^3 + ...

(-3.2e+002+70i)z + (-2.3e+002-3.5e+002i)z^2 + (-80+1.2e+002i)z^3 + ...

(-1.8e+002+2.1e+002i)z + (-4.5e+002+2.3e+002i)z^2 + ...

Column 2

77+1.6i + (-67+1.9e+002i)z + (-72+2.7e+002i)z^2 + (-6.1e+002+2.6e+002i)z^3 + ...

80+0i + (-7.6+4.3i)z + (-3e+002-1.9e+002i)z^2 + (-1.1e+002-4.3e+002i)z^3 + ...

(5.6e+002+3.7i)z + (-4.2e+002-8.3e+002i)z^2 + (9.6e+002-5.4e+002i)z^3 + ...

(-1.7e+002+1.2e+002i)z + (2.3e+002+2.3e+002i)z^2 + (-1.2e+002+3.6e+002i)z^3 + ...

(1.5e+002+3.2e+002i)z + (4.8e+002-2.7e+002i)z^2 + (4.8e+002+5.7e+002i)z^3 + ...

Column 3

2.1-94i + (-2.1e+002+1.3e+002i)z + (2.6e+002-1.3e+002i)z^2 + ...

1.4e+002-65i + (-2.1e+002-2.5e+002i)z + (-1.1e+002-13i)z^2 + ...

4e+002+0i + (5e+002-7.3e+002i)z + (-1.2e+003-4.1e+002i)z^2 + ...

(-1.2e+002+3.1e+002i)z + (4.3e+002-90i)z^2 + (-3.8e+002+1.9e+002i)z^3 + ...

(5.5e+002+3.2e+002i)z + (-2e+002-5.9e+002i)z^2 + (12+6.2e+002i)z^3 + ...

Column 4

-14+2.2e+002i + (4.8e+002+5.1e+002i)z + (-1.3e+002+1.3e+002i)z^2 + ...

-4.5+1.9e+002i + (-3.4e+002+12i)z + (1e+002+1.9e+002i)z^2 + (1.9e+002+13i)z^4 + ...

1.3e+002+1.7e+002i + (-4.9e+002-1.3e+003i)z + (-22-3.8i)z^2 + (-95-2.6e+002i)z^3 + ...

9.5+0i + (5.4e+002+84i)z + (-1.4e+002+1.8e+002i)z^2 + (2.2e+002-46i)z^3 + ...

(7.3e+002-6.7e+002i)z + (-2e+002-20i)z^2 + (4.4e+002-29i)z^3 + ...

Column 5

-4.1e+002+5.1e+002i + (-1.8e+002+2.8e+002i)z + (6.5e+002-1.7e+002i)z^2 + ...

-2.9e+002-1.6e+002i + (-4.1e+002-2e+002i)z + (4.2e+002+3.1e+002i)z^2 + ...

1.5e+002-8.1e+002i + (-2.1e+002-8.5e+002i)z + (-2.6e+002+5.8e+002i)z^2 + ...

1.4e+002+2.8e+002i + (2.7e+002+2.3e+002i)z + (25-1.1e+002i)z^2 + ...

6.2e+002+0i + (6.9e+002-46i)z + (-5.1e+002-2e+002i)z^2 + (62-1.8e+002i)z^3 + ...

The following check proves accuracy of obtained result:



A’*X + X’*A - B

Zero polynomial matrix: 5-by-5, degree: -Inf

ans =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Besides the symmetric equations, also all one-sided Diophantine equation solvers can be addressed by
complex polynomial matrices as well. For inastance, having defined complex polynomial matrices A,B, C
of degree 5 and size 5-by-5, the solution X, Y of the equation AX + BY = C is reached easily by the
following Polynomial Toolbox command (along with a standard check):

>> A = prand(5,5,’z’) + prand(5,5,’z’)*j;

>> B = prand(5,5,’z’) + prand(5,5,’z’)*j;

>> C = prand(5,5,’z’) + prand(5,5,’z’)*j;

>> [X,Y] = axbyc(A,B, C);

>> A*X + B*Y - C

Zero polynomial matrix: 5-by-5, degree: -Inf

ans =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

All linear polynomial equation solvers of the Polynomial Toolbox are based on powerful linear con-
stant matrix solvers built into MATLAB. As a result, the Polynomial Toolbox functions for polynomial
equations are not only very accurate as it was shown above, but also pretty fast. For instance, each of
presented examples did not consume more than 1 second on a PC notebook with Celeron 500 MHz, 64
MB RAM and MATLAB 6.0.

3.2 Polynomial Spectral Factorization

Scalar complex polynomials are considered first. In this case, the FFT based algorithm can be highly
recommended for its speed and reliability.

A symmetric polynomial of degree 500 to be factored, positive on the unit circle, is created by the
following commands:

>> p = prand(250,’z’) + j*prand(250,’z’);

>> p = p*p’;

Applying the FFT based routine with 212 Fourier points the spectral factor is received in a fraction
of second:

>> tic, f = fftspf(p,2^14); toc;

elapsed_time =

0.2200

Correctness checks follow now. Note that some additional Polynomial Toolbox functions and operators
are applied to complex polynomials (actually, all operators and standard functions work for complex
polynomials and polynomial matrices automatically):

>> isstable(f)

ans =

1

>> norm(f*f’-p)/norm(p)

ans =

1.2460e-005

As one can see, both the stability requirement is met and the equation ff? = p is fulfilled with good
accuracy. Should the residue be too high for a specific application, there is no problem to take more
Fourier points to improve the result:



>> f = fftspf(p,2^17);

>> norm(f*f’-p)/norm(p)

ans =

3.6538e-009

>> f = fftspf(p,2^19);

>> norm(f*f’-p)/norm(p) ans =

0

In the latter case, an exact (up to working precision) solution was found.
Let us switch to complex polynomial matrices now. We proceed similarly to the scalar case, starting

with construction of a 5-by-5 symmetric complex matrix of degree 5:

>> P = prand(5,5,’z’) + j*prand(5,5,’z’);

>> P = P*P’;

For the spectral factorization the spf function of the Polynomial Toolbox is used, implementing the
Newton-Raphson iterative procedure.

>> tic, F = spf(P); toc;

elapsed_time =

9.8300

>> F

Polynomial matrix in z: 5-by-5, degree: 5

F =

Column 1

-0.75-0.25i + (0.27-0.38i)z + (0.23-1.1i)z^2 + (-1.4-1.5i)z^3 + (0.097-1.8i)z^4 + (4.8+0i)z^5

-0.55-0.0062i + (0.3+0.38i)z + (-0.76-0.37i)z^2 + (-0.1-0.84i)z^3 + (-0.13+0.46i)z^4

-0.41+0.93i + (0.86+0.3i)z + (-0.45-0.31i)z^2 + (-1.6+1.6i)z^3 + (0.34+0.34i)z^4

-0.31+0.048i + (0.34-0.78i)z + (-0.38-0.28i)z^2 + (-0.69+0.25i)z^3 + (-0.31-0.68i)z^4

-0.81+0.11i + (0.14-0.54i)z + (0.19+0.61i)z^2 + (-0.25+0.22i)z^3 + (-0.35+0.9i)z^4

Column 2

1.6+0.6i + (0.84+1.4i)z + (0.83-0.71i)z^2 + (-1.6+0.5i)z^3 + (0.26+1.1i)z^4 + (0.015+0.92i)z^5

-0.74-0.73i + (0.31+1.6i)z + (-0.81-0.46i)z^2 + (0.75+0.13i)z^3 + (0.15-0.45i)z^4 + (4.8+0i)z^5

0.05+0.29i + (-0.99-0.59i)z + (0.45+1.9i)z^2 + (-0.74+0.45i)z^3 + (-0.17-1.5i)z^4

-0.75-0.17i + (-0.96-0.98i)z + (-1.1+0.035i)z^2 + (-0.28+1i)z^3 + (0.36-0.64i)z^4

-0.25-0.076i + (0.34+0.36i)z + (0.64-0.31i)z^2 + (0.54+1i)z^3 + (-0.75+1i)z^4

Column 3

-0.52+0.83i + (-0.95+0.71i)z + (1.1+0.83i)z^2 + (-0.2-0.8i)z^3 + (-0.44+0.68i)z^4(-2.1+0.2i)z^5

-0.37+0.3i + (-0.9-0.87i)z + (-0.63-0.33i)z^2 + (-0.72-0.7i)z^3 + (0.12+1.1i)z^4 + (-0.89+0.9i)z^5

-0.6+0.036i + (-0.69-0.55i)z + (0.67+0.35i)z^2 + (0.29+0.24i)z^3 + (-1.8-0.69i)z^4 + (5.1+0i)z^5

0.57-0.66i + (0.57-0.27i)z + (-0.82+0.19i)z^2 + (-1.3+0.34i)z^3 + (0.68+0.14i)z^4

0.084-0.33i + (0.5-0.59i)z + (-0.92+0.91i)z^2 + (-0.12+1.3i)z^3 + (-0.086+1i)z^4

Column 4

0.55+0.31i + (1.3-0.63i)z + (-2-0.63i)z^2 + (-1.6+0.23i)z^3 + (-0.71-0.84i)z^4 + (-2.2+0.0018i)z^5

-0.15-0.8i + (-0.25-1.1i)z + (-1.2-0.51i)z^2 + (-0.81+0.028i)z^3 + (-0.49+0.25i)z^4 + (-0.5+0.7i)z^5

-0.26+0.13i + (-0.78-0.54i)z + (-0.49+0.79i)z^2 + (1.4+0.92i)z^3 + (0.24-0.083i)z^4 + (0.24+1.3i)z^5

-0.32-0.31i + (-1.3-0.23i)z + (0.32+2.2i)z^2 + (-0.68+0.79i)z^3 + (-0.4+2.2i)z^4 + (5.1+0i)z^5

-0.15-0.27i + (-0.79-0.044i)z + (0.36+1.5i)z^2 + (1.4-0.088i)z^3 + (-0.35-0.13i)z^4

Column 5

1.7+0.73i + (0.22+0.025i)z + (-1.4+0.033i)z^2 + (-0.71+1.3i)z^3 + (0.46-0.2i)z^4 + (1.3+0.7i)z^5

-0.018+0.89i + (-0.35+0.31i)z + (-0.64-1.9i)z^2 + (1.4+0.65i)z^3 + (0.71+1.8i)z^4 + (-0.87+0.76i)z^5

0.69-0.17i + (0.63-1i)z + (-1.4-1.5i)z^2 + (0.76+1.6i)z^3 + (0.94+0.027i)z^4 + (0.98-0.61i)z^5

0.083-0.37i + (-0.72+0.62i)z + (-0.97+0.23i)z^2 + (-1.6-0.58i)z^3 + (0.45+1.8i)z^4 + (-1.4+0.39i)z^5

-0.53+0.032i + (0.24+1.3i)z + (-1.6-0.34i)z^2 + (-2.3+0.042i)z^3 + (1.2-0.21i)z^4 + (5.7+0i)z^5

Standard checks follow:

>> isstable(F)

ans =

1

>> norm(F’*F-P)/norm(P)

ans =

3.6995e-007

Also in this case the solution can be refined. By prescribing a higher desired accuracy (default is
10−8), a more precise solutions are found:



>> F = spf(P,1e-10);

>> norm(F’*F-P)/norm(P)

ans =

1.3141e-009

>> F = spf(P,1e-12);

>> norm(F’*F-P)/norm(P)

ans =

0

Although the spectral factorization as a quadratic problem is much more involving than linear poly-
nomial equations presented in the previous subsection, we can conclude that the Polynomial Toolbox
succeeded in factoring relatively large complex polynomials and polynomial matrices at acceptable com-
putational time.
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5 Conclusion

Performance of polynomial equation and spectral factorization solvers included in the Polynomial Toolbox
for MATLAB was manifested in this report for complex valued coefficients. Motivation for developing
such tools for complex (matrix) polynomials comes from the field of signals and communications as it is
shown in the report by an example of a radio communication channel and its optimization. In addition
to particular numerical examples, the algorithms used by respective solvers are also described.
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