IMPLEMENTATION OF SLIDING MODE CONTROL IN SIMULINK 4.1 (R12.1)

Kvétoslav Belda
Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic

Abstract: The paper briefly introduces Sliding Mode Control (SMC)
of the planar redundant parallel robot. This type of the robots seems to be one
of the promising ways to solve the problems of accuracy and speed. The main goal
is presentation of using MATLAB — SIMULINK environment version 4.1 (R12.1)
for simulation of such control of the robot. Implementation is accomplished
by combination of S-Functions and ordinary Functions, both programmed
in C code as mex Functions.

1. Introduction

The area of the robots and manipulators is in the constant development caused by the fact
that the robots are the basis of the most machine and production lines in the factories.

The uncompromising requirements on their new types are primarily high accuracy,

high speed. One example of the promising parallel construction is in Fig. 1. Figure shows
the planar redundant parallel robot for which the Sliding Mode Control was designed.

Wy

| " 'B. | b
Workspace g 4 3
of the robot 1 A;% ¢4 / C@
—\
I Movable platform
I / \
0.75
B C |
T C“é 74\ Y
0.5 3 Sau

0.25

0 025 05 0.75 1

Fig. 1. Scheme of planar parallel robot with the most important geometrical description
(the Cartesian coordinates (xg, yg,) of center of movable platform,
and all angles: motor angles (¢;.4) and joint angles ();.4)).

Mechanical system (robot-manipulator Fig. 1) can be described by nonlinear differential
equation in the following form.

y=—f(y,y)+B(y)u (1)

The equation we can obtain with using Lagrange’s equations of mixed type. After this
description of the robot we can start with introduction of the approach to the control.

2. Sliding Mode Control (SMC)

Discrete type of the Sliding mode control (Elmali 1992) is derived analogically
to the theory of stability in continuous domain. Generally it is based on the ‘switching’
control action and the performance of Lyapunov stability theorem.

The state is driven towards a desired switching (sliding) hyperplane under Lyapunov
control. The ‘switching’ maintains the state on this hyperplane, once it has been reached,
in spite of perturbations. This method offers an advantage of accuracy at the cost of control
dithering, which ensues from the ‘switching’ part.

Let us consider the nonlinear equation (1), which can be transformed and simply
discretized by Taylor series with sampling period & to the following state formulation:

X(k +1)= A(X(k)) + B(X(k)) ulk) 2
With this state description, we can obtain control law in the following structure:

u(k)=—~(CB(Kk)) {c[A(k) + (k) - X, (k+ 1) - sk +1}

ufk)= B (F(x.X,)) (3)
where s(k + 1) = e_Pds(k) - Ksign(s(k)) 4)
with considering s(k) = C(X(k) — Xd(k)) ®))

which represents the choice of hyperplane (elements of matrix C) and where the evaluation
of control error is included.

Eq. (4) with eq.(5) must satisfy Lyapunov stability theorem. ‘I’(k) represents
unknown perturbation, which can be estimated by

Wk =1)=X 0 (k) = Alk 1) =Bk - 1)ulk -1) (©)

topical

With the assumption that the dynamics of perturbation is considerably slower than
discretization frequency and the order of the perturbation magnitude is much smaller,
the estimation is valid.

By this the Sliding Mode Control is briefly defined and now we can discuss its
implementation in SIMULINK.

2. The implementation in SIMULINK environment.

For simulation of the robot, the two main parts are needed. The first part is a model
of the robot, which is represented by mex S-Function SmodRob. This function provides
computation of derivatives and state of the robot. For these, the S-Function calls
the ordinary mex Function McISMC.dll, which computes model of the robot. It means,
it computes all elements of differential equation (1).

The second part is control part, which is represented by mex S-Function SmodSMC.
This function uses actual topical state of the robot and desired values of this state (input).
The SMC is based on the model, therefore S-Function computes model of the robot (elements
of eq.(2); mex Function McISMC.dIl) and consecutively computes four actuators for four
drives (mex Function cISMC.dIl; output). The following subsections progressively introduce
the SIMULINK block diagram, structures of functions and alert on interesting places
in the code. The notes are appended into structure of the mex files.

2.1 The Simulink block diagram.

Frai

||1'1 Cui, 13 | wedayeang | v | T i itk | T | T o o o e
g1 & F 3 Eamp uied
— 1
i1 (]
m- i Dam - L
a4 | e S
S d S L o S i - —
r :I hain
ErFuanclion S F arwizn pame = T
Cowvirdiai el v Ml gl i "
. P
Fram ke “:':"I campuia-d
e, . v = el -
el -
- 1
1
o » -
£
Ui i [ealap
Gefings Cioashle Click Do kb 1l
vanabla shap oda &5 (Dormar-Frical, mas inlshap 0.01 Tor rajeciony data laading Tor gual Ralme reiulls

Fig. 2. The SIMULINK block - ot -
diagram for the simulation = = RAl- mn
of the Sliding Mode Control S~ ke
(SMCQ). _— —

In figure, the mex S-Functions are boldly surrounded. For simple utilization,
the diagram includes references on Graphical User Interface (GUI, buttons Double Click).

~ 2.2 The structure of ordinary Functions in C code (mex files). ~
Executive part of the function.

#i ncl ude <mat h. h>

4 . y First row includes outputs and rest is input.
include "nex.h" e—— |
void Cfun_Mcl SMC(real T f[3],real T B[3*4],real _T Asnc[6],real T Bsnc[6*4],
real T X 6],
real T Ts, real TL, real T, real T a, real T nB)

{

/* Declaration of local (internal) variables *****x*xxdkkkkxkrrkhkkxkrrs */f
doubl e m0, 1T10, pom /* scalar variables */
double nf4],1[4],r[4] [/* array variables */

/* body Of the Functlon R Rk S I I IR R O O O R R R S O R S 7\-/

|} N MATLAB interface part of the function. |

(voi d nmexFunction(int no, mkArray **out, int ni, const nxArray **in)

/

{
if (ni '=6) { mexErrMsgTxt ("6 input argunents required."); return;}
if (no!=4) { mexErrMsgTxt ("4 output argunments required."); return;}
out[0] = nxCreateDoubl eMatrix(3,1, mxREAL); /* outputs: continuous nodel */
out[1] = nxCreateDoubl eMatrix(3,4, REAL); /* outputs: continuous nodel */
out[2] = nxCreateDoubl eMatrix(6,1, REAL); /* outputs: discrete nodel */
out[3] = nxCreateDoubl eMatrix(6,4, REAL); /* outputs: discrete nodel */

/* Clun M SMX(f, B, Asnt, Bsn, Declaration and definition of outputs.

?I'(s Lo Call of executive part of the function.

a First row includes outputs and rest is input.
Cfun_Mecl SMC(mxGet Pr(out[0]), mxGet Pr(out[1]), mxGetPr(out[2]), mxGetPr(out[3]),
mxGet Pr (in[0Q]),

*mxGet Pr(in[1]), *mkGetPr(in[2]),*mGetPr(in[3]),
*mxGet Pr(in[4]), *mkGetPr(in[5]));

r
C

2.3 The S-Functions in C code (mex files).

Example of structure of the S-Function SmodRob for computation of the continuous
model of the robot.

#defi ne S_FUNCTI ON_NAME SnodRob
#define S_FUNCTI ON_LEVEL 2
#i ncl ude <math. h>
#i ncl ude <sinstruc. h>
/* Define for easy access of the input paraneters
sGet SFcnParan(SinBtruct *S, int_T index) */
#def i ne nxpa_X0 ssCGet SFcnPar an(S, 0) /* pointer to initial condition */
#def i ne nxpa_Ts ssCGet SFcnPar an(S, 1) /[* pointer to sanple time */

#define ul(el ement) (*ulPtrs[el enent]) [* pointer to Input PortQ */
Macro for getting of inputs.

/* mdl InitializeSizes */
static void ndlInitializeSizes(SinStruct *S) { body of the function }

[* mdl InitializeSanpleTines */
static void ndlInitializeSanpl eTi mes(SinStruct *S) { body of the function }

/* mdlInitializeConditions */
#define MDL_I NI TI ALI ZE_CONDI TI ONS
static void ndlInitializeConditions(SinStruct *S) { body of the function }

/* mdl Qut puts */
static void nmdl Qut puts(SinStruct *S, int_T tid) { body of the function }

/* mdl Update */
#def i ne MDL_UPDATE
static void ndl Update(SinStruct *S, int_T tid) { body of the function }

/* mdl Derivatives */
#defi ne MDL_DERI VATI VES
static void ndl Derivatives(Sinttruct *S) { body of the function }

/* mdl Term nate */
static void ndl Term nate(SinStruct *S) { }

#i fdef MATLAB _MEX FI LE /[* Is this file being conpiled as a MEX-file? */

#i ncl ude "sinulink.c" /* MEX-File interface mechani sm */
#el se
#i ncl ude "cg_sfun. h" /* Code generation registration function */
#endi f

Inside of the S-Function, where the ordinary Functions (mex) are called.
I nput Real PtrsType ulPtrs=ssGetl nput Port Real Si gnal Ptrs(S, 0);

real T *xcont = ssCetContStates(S);

real _T *dxcont = ssGetdX(S); | Getting of inputs. |
QOub!e pom *f, *B; nmxArray *lhs[4], *rhs[6];

'{”t bl mexCallMATLAB of fun McISMC.dll |

rhs[0] = nxCreat eDoubl eMatrix(6, & nxREAL); /* rhs=right hand side par. */
for (i=0;i<6;i++) mxGetPr(r)[i]=xcont[i];

rhs[1] = nmxpa_Ts; rhs[2l—= mxpa_L; rhs[3] = nkpa |; rhs[4] = nxpa_a;
rhs[5] = nxpa_nsB;
mexCal | MATLAB(4, lhs, 6, rhs, "Ml SMC");

f=mxGetPr(1hs[0]); B=nxGetPr(lhs[1]); /* I hs=left hand side (paraneters) */

Co Transfer of outputs of the mex Function McISMC.dII to variables. |
for (j=0; j< 4; j++) pom+=B[j*3+i]*ul(j)
dxcont[i +3]=f[i]+pom Co

,‘\|Use of the macro for getting of inputs. |

Note: Simple example of handling with matrix in format, which is compatible with MATLAB
saving procedure of arrays (matrixes). The example uses the mexPrintf command to list

elements of marix. Matlab command line gives back for:
>>B=[123 456, 78 9]

B =
1 2 3
4 5 6
7 8 9

in Matlab the matrix-arrays are saved like this: B = [1 4 7 2 5 8 3 6 9], for handling
with such a m x n matrix B is suitable use versatile notation (one dimension arrays), which

can be used in both cases: for Matlab even for ANSI norm of C code.
for (i=0; i < m i++)

mexPrintf(" \n");
for (j=0; j < n; j++) mexPrintf("98.2f \t", Bkml[j*mti]);

}
result: 1.00 2.00 3.00
4. 00 5.00 6. 00
7.00 8. 00 9.00
3. Illustration of simulation.
x10° Abberation of position. x10° Abberation of winding.
T T XY Graph. 12 T T
| | | | four actuators |
] F=--,7-1- -
1 1
4 = = ol - -H+-4- -
1 1
sF--4- 0.6~ — — i - -
1 1 1
20— -4 - 0.4 —— -
1 -d-= 0.2~ -
1 |
0 1 0
0 2 0 2 4
EpMAX = 0.006 mm, in time tp = 1.660s EY MAX = 0.001°, in time t Y = 2.970s
Velocity of position. W(t) Graph. Velocity of angle of winding.
0.8 T T 1 1 0.4 T T
1 1 20 1 1
o6 === 4---- 03 = = A = =1
: i | 10 : i 1
1 1
1 1 1
o4 —fF-1- -\ 0 0.2~ =f— -1
1 1 1 1
oo f--do--N1 10 o1 f - - . . .)
! L ! Fig. 3. Simulation of the tracking
1 1 1 1 :
o L n o L N of the robot along the Shape trajectory.

4. Conclusion.

The paper deals with C code implementation of Sliding Mode Control into Simulink
environment. The programming in langue C was appeared as necessity for future real-time
control of the physical model of the robot by DSP.

References

1. Online Manuals (in PDF): External Interfaces; Writing S-Functions. The MathWorks, Inc. 2000.

2. ELMALI, H. — OLGAC, N.: Sliding mode control with perturbation estimation (SMCPE):
a new approach, INT. J. CONTROL 1992, vol.56, no.4, pp. 923 — 941.

3. BOHM, J. — BELDA, K. — VALASEK, M.: Study of control of planar redundant parallel robot.
Proceedings of the IASTED International conference MIC 2001, pp. 694 — 699.

5 Acknowledgement
This research is svupported by GACR (101/99/0729, 1999-2001): “Redundant parallel robot and its control”
and IG CVUT (CTU IG 300104412, 2001) “The Direct kinematics for Parallel Robots”.
Contact address:
Ustav teorie informace a automatizace AV CR
Pod vodarenskou vézi 4, 182 08 Praha 8 — Liben
E-mail: belda@utia.cas.cz

mailto:belda@utia.cas.cz

