
IMPLEMENTATION OF SLIDING MODE CONTROL IN SIMULINK 4.1 (R12.1) 
 

Květoslav Belda 
Institute of Information Theory and Automation 

Academy of Sciences of the Czech Republic 
 

Abstract: The paper briefly introduces Sliding Mode Control (SMC) 
of the planar redundant parallel robot. This type of the robots seems to be one 
of the promising ways to solve the problems of accuracy and speed. The main goal 
is presentation of using MATLAB – SIMULINK environment version 4.1 (R12.1) 
for simulation of such control of the robot. Implementation is accomplished 
by combination of S-Functions and ordinary Functions, both programmed 
in C code as mex Functions. 

 
1. Introduction 

 
The area of the robots and manipulators is in the constant development caused by the fact 

that the robots are the basis of the most machine and production lines in the factories. 
The uncompromising requirements on their new types are primarily high accuracy, 

high speed. One example of the promising parallel construction is in Fig. 1. Figure shows 
the planar redundant parallel robot for which the Sliding Mode Control was designed. 

 

0 0.5 1

0 

0.25 

0.5 

0.75 

1 

ψ4 

B4ϕ4

A4 A3

A2A1 

ϕ3

ϕ1 ϕ2

ψ3 

ψ1 

ψ2

ψ

B1 

B3

B2

C4
C3

C1 C2
E

l

l 

l

l

l
l

l l

0.25 0.75  
 

Fig. 1. Scheme of planar parallel robot with the most important geometrical description 
(the Cartesian coordinates (xE, yE, ψ) of center of movable platform, 

and all angles: motor angles (ϕ1-4) and joint angles (ψ1-4)). 
 

Mechanical system (robot-manipulator Fig. 1) can be described by nonlinear differential 
equation in the following form. 

 
( ) uyByyfy )(, +−= ���          (1) 

 
The equation we can obtain with using Lagrange’s equations of mixed type. After this 
description of the robot we can start with introduction of the approach to the control. 

Movable platform

Workspace 
of the robot 



2. Sliding Mode Control (SMC) 
 
Discrete type of the Sliding mode control (Elmali 1992) is derived analogically 

to the theory of stability in continuous domain. Generally it is based on the ‘switching’ 
control action and the performance of Lyapunov stability theorem. 

The state is driven towards a desired switching (sliding) hyperplane under Lyapunov 
control. The ‘switching’ maintains the state on this hyperplane, once it has been reached, 
in spite of perturbations. This method offers an advantage of accuracy at the cost of control 
dithering, which ensues from the ‘switching’ part. 

Let us consider the nonlinear equation (1), which can be transformed and simply 
discretized by Taylor series with sampling period  δ to the following state formulation: 

 
( ) ( )( ) ( )( ) ( )kkkk uXBXAX +=+1        (2) 

 
With this state description, we can obtain control law in the following structure: 
 

( ) ( )( ) ( ) ( ) ( )[ ] ( ){ }11Ψ1 +−+−+−= − kkkkkk d sXACCBu  

( ) ( )( )dk XXFBu ,                   ~        1−=       (3) 
where  ( ) ( ) ( )( )ksignkek P sKss −=+ − δ1       (4) 
with considering  s(k) = C(X(k) – Xd(k))      (5) 
 

which represents the choice of hyperplane (elements of matrix C) and where the evaluation 
of control error is included. 

Eq. (4) with eq. (5) must satisfy Lyapunov stability theorem. ( )kΨ  represents 
unknown perturbation, which can be estimated by 

 
( ) ( ) ( ) ( ) ( )1111 −−−−−=− kkkkk

topical
actual uBAXΨ      (6) 

 
With the assumption that the dynamics of perturbation is considerably slower than 

discretization frequency and the order of the perturbation magnitude is much smaller, 
the estimation is valid. 

By this the Sliding Mode Control is briefly defined and now we can discuss its 
implementation in SIMULINK. 

 
2. The implementation in SIMULINK environment. 

 
For simulation of the robot, the two main parts are needed. The first part is a model 

of the robot, which is represented by mex S-Function SmodRob. This function provides 
computation of derivatives and state of the robot. For these, the S-Function calls 
the ordinary mex Function MclSMC.dll, which computes model of the robot. It means, 
it computes all elements of differential equation (1). 

The second part is control part, which is represented by mex S-Function SmodSMC. 
This function uses actual topical state of the robot and desired values of this state (input). 
The SMC is based on the model, therefore S-Function computes model of the robot (elements 
of eq.(2); mex Function MclSMC.dll) and consecutively computes four actuators for four 
drives (mex Function clSMC.dll; output). The following subsections progressively introduce 
the SIMULINK block diagram, structures of functions and alert on interesting places 
in the code. The notes are appended into structure of the mex files. 



2.1 The Simulink block diagram.  
 

 

         
 
In figure, the mex S-Functions are boldly surrounded. For simple utilization, 

the diagram includes references on Graphical User Interface (GUI, buttons Double Click ···). 
 

2.2 The structure of ordinary Functions in C code (mex files). 
 

#include <math.h>
#include "mex.h"
void Cfun_MclSMC(real_T f[3],real_T B[3*4],real_T Asmc[6],real_T Bsmc[6*4],

real_T X[6],
real_T Ts, real_T L, real_T l, real_T a, real_T m3)

{
/* Declaration of local (internal) variables ************************** */
double m10, IT10, pom; /* scalar variables */
double m[4],I[4],r[4] /* array variables */

· · ·
/* body of the Function *********************************************** */
· · ·
}

void mexFunction(int no, mxArray **out, int ni, const mxArray **in)
{
if (ni != 6) { mexErrMsgTxt("6 input arguments required."); return;}
if (no != 4) { mexErrMsgTxt("4 output arguments required."); return;}

out[0] = mxCreateDoubleMatrix(3,1,mxREAL); /* outputs: continuous model */
out[1] = mxCreateDoubleMatrix(3,4,mxREAL); /* outputs: continuous model */
out[2] = mxCreateDoubleMatrix(6,1,mxREAL); /* outputs: discrete model */
out[3] = mxCreateDoubleMatrix(6,4,mxREAL); /* outputs: discrete model */

/* Cfun_MclSMC(f, B, Asmc, Bsmc,
X,
Ts, L, l,
a, m3) */

Cfun_MclSMC(mxGetPr(out[0]),mxGetPr(out[1]),mxGetPr(out[2]),mxGetPr(out[3]),
mxGetPr(in[0]),

*mxGetPr(in[1]),*mxGetPr(in[2]),*mxGetPr(in[3]),
*mxGetPr(in[4]),*mxGetPr(in[5]));

}

Fig. 2. The SIMULINK block
diagram for the simulation
of the Sliding Mode Control
(SMC). 

Executive part of the function. 
First row includes outputs and rest is input. 

MATLAB interface part of the function. 

Declaration and definition of outputs. 

Call of executive part of the function. 
First row includes outputs and rest is input. 



2.3 The S-Functions in C code (mex files). 
 
Example of structure of the S-Function SmodRob for computation of the continuous 

model of the robot. 
 

#define S_FUNCTION_NAME SmodRob
#define S_FUNCTION_LEVEL 2
#include <math.h>
#include <simstruc.h>
/* Define for easy access of the input parameters

sGetSFcnParam(SimStruct *S, int_T index) */
#define mxpa_X0 ssGetSFcnParam(S,0) /* pointer to initial condition */
#define mxpa_Ts ssGetSFcnParam(S,1) /* pointer to sample time */
· · ·
#define u1(element) (*u1Ptrs[element]) /* pointer to Input Port0 */
· · ·
· · ·
/* mdlInitializeSizes */
static void mdlInitializeSizes(SimStruct *S) { body of the function }

/* mdlInitializeSampleTimes */
static void mdlInitializeSampleTimes(SimStruct *S) { body of the function }

/* mdlInitializeConditions */
#define MDL_INITIALIZE_CONDITIONS
static void mdlInitializeConditions( SimStruct *S) { body of the function }

/* mdlOutputs */
static void mdlOutputs(SimStruct *S, int_T tid) { body of the function }

/* mdlUpdate */
#define MDL_UPDATE
static void mdlUpdate(SimStruct *S, int_T tid) { body of the function }

/* mdlDerivatives */
#define MDL_DERIVATIVES
static void mdlDerivatives(SimStruct *S) { body of the function }

/* mdlTerminate */
static void mdlTerminate(SimStruct *S) { }

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-File interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

Inside of the S-Function, where the ordinary Functions (mex) are called. 
 

InputRealPtrsType u1Ptrs=ssGetInputPortRealSignalPtrs(S,0);
real_T *xcont = ssGetContStates(S);
real_T *dxcont = ssGetdX(S);
double pom, *f, *B; mxArray *lhs[4], *rhs[6];
int i, j;
{
rhs[0] = mxCreateDoubleMatrix(6, 1, mxREAL); /* rhs=right hand side par. */
for (i=0;i<6;i++) mxGetPr(rhs[0])[i]=xcont[i];
rhs[1] = mxpa_Ts; rhs[2] = mxpa_L; rhs[3] = mxpa_l; rhs[4] = mxpa_a;
rhs[5] = mxpa_m3;
mexCallMATLAB(4, lhs, 6, rhs, "MclSMC");
f=mxGetPr(lhs[0]); B=mxGetPr(lhs[1]); /* lhs=left hand side (parameters) */

· · ·
for (j=0; j< 4; j++) pom+=B[j*3+i]*u1(j);

dxcont[i+3]=f[i]+pom; · · ·
}

Transfer of outputs of the mex Function MclSMC.dll to variables.

Getting of inputs. 

Macro for getting of inputs. 

mexCallMATLAB of fun MclSMC.dll 

Use of the macro for getting of inputs.



Note: Simple example of handling with matrix in format, which is compatible with MATLAB 
saving procedure of arrays (matrixes). The example uses the mexPrintf command to list 
elements of marix. Matlab command line gives back for: 
>> B=[1 2 3; 4 5 6; 7 8 9]

B =
1 2 3
4 5 6
7 8 9

in Matlab the matrix-arrays are saved like this: B = [1 4 7 2 5 8 3 6 9], for handling 
with such a m × n matrix B is suitable use versatile notation (one dimension arrays), which 
can be used in both cases: for Matlab even for ANSI norm of C code. 
for (i=0; i < m; i++)

{
mexPrintf(" \n");
for (j=0; j < n; j++) mexPrintf("%8.2f \t", Bkm1[j*m+i]);

}
result: 1.00 2.00 3.00

4.00 5.00 6.00
7.00 8.00 9.00

 

3. Illustration of simulation. 

0 2 4 0 
1 
2 
3 
4 
5 
6 x 10 -6                     Abberation of position. 

0 2 4
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-3                    Abberation of winding.

0 0.5 1 0

0.25

0.5

0.75

1
XY Graph. 

  
EpMAX = 0.006 mm, in time tp = 1.660s    Eψ MAX = 0.001°, in time t ψ = 2.970s 

0 2 4 0 

0.2 

0.4 

0.6 

0.8 
    Velocity of position. 

0 2 4
0

0.1

0.2

0.3

0.4
             Velocity of angle of winding.

0 2 4 
-20

-10

0

10

20

ψ (t) Graph. 

  
4. Conclusion. 

 
The paper deals with C code implementation of Sliding M

environment. The programming in langue C was appeared as nec
control of the physical model of the robot by DSP. 
 

References 
 

1.  Online Manuals (in PDF): External Interfaces; Writing S-Functions. T
2.  ELMALI, H. – OLGAC, N.: Sliding mode control with perturb
     a new approach, INT. J. CONTROL 1992, vol.56, no.4, pp. 923 – 941
3.  BÖHM, J. – BELDA, K. – VALÁŠEK, M.: Study of control of pla
     Proceedings of the IASTED International conference MIC 2001, pp. 6

 
Acknowledgement 

This research is supported by GAČR (101/99/0729, 1999-2001): “Redundant 
and IG ČVUT (CTU IG  300104412, 2001)  “The Direct kinematics 

 

Contact address: 
Ústav teorie informace a automatizace  AV ČR 
Pod vodárenskou věží 4, 182 08 Praha 8 – Libeň 
E-mail: belda@utia.cas.cz 

Fig. 3. S
of the ro

1

four actuators 
u

  

  

ode Control into Sim
essity for future rea

he MathWorks, Inc. 20
ation estimation (SM
. 
nar redundant parallel
94 – 699. 

parallel robot and its con
for Parallel Robots”. 

imulation of the tra
bot along the Sshape traj

u

u2
 

u3
 4
 

ulink 
l-time 

00. 
CPE): 

 robot. 

trol” 

cking
ectory.

mailto:belda@utia.cas.cz

