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Abstract. The paper is devoted to sub{optimization technique in integer spaces. The Random

Rank Roam method is introduced and its parallel form was realized as a set of functions. The

Parallel 3R is a tool for sub{optimum solution �nding.
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1 Introduction

The Random Rank Roam method (3R) [6, 7] arises from a criticism of simulated annealing (see
Dekkers, Aarts and Fox [1, 3]) in a discrete space in the presence of a priori knowledge of an
acceptable sub{optimum value. In this case the capture in the sub{optimum state is possible
without decreasing temperature. Using the rank selection as in Winston [8], the new method
is inspirable in genetic optimization (see Goldberg [5]), when the use of the rank value instead
of the �tness function value improves the properties of the optimization process. The original
method [6, 7] was generalized to have the better performance in the sub{optimum searching.

2 Constrained integer system

Let n 2 N be a dimension of the system. Let
�!
l ;�!u 2 Zn be lower and upper bound vectors

satisfying conditions lk < uk for 1 � k � n. Then the constrained integer system is

S = f�!x 2 Zn j lk � xk � uk; 1 � k � n g:

Any vector �!x i 2 S is said to be a state Ei of the constrained integer system S.

3 Sub{optimization process

Let f : Zn ! R be a real objective function of integer variables de�ned for all states �!x i 2 S.
The state value is de�ned simply as

fi = f(�!x i) = f(Ei):

Let f� be a given real value satisfying condition

f� � min
k=1;:::;s

fk:

Then the sub{optimum state (minimum) is de�ned as a state Ei satisfying fi � f�. The value
f� decomposes the constrained integer system S into two disjoint subsystems: SA containing
sA > 0 states and ST = S n SA, which contains sT = s � sA � 0 states. If f� is equal to
the minimum value of objective function f on S, all the states of SA are optimal. If SA is



the sub{optimum subsystem of S, then the sub{optimization task (SOT) is de�ned as the
triplet < S; f; f� > or rather as a problem of �nding any Ei 2 SA. Let < S; f; f� > be the
sub{optimization task with SA and ST . Let 0 � pij � 1 be a probability of the transfer from
Ei 2 S to Ej 2 S in one step. Let

sX
j=1

pij = 1; 1 � i � s:

The sub{optimization process (SOP) is de�ned by the rules:

(i) Ei 2 SA ) pii = 1,

(ii) Ei 2 ST ) pij > 0.

It can be represented as the quadruplet < S; f; f�; P > where P = fpijg1�i;j�s. It is evident
that the sub{optimization process is de�ned as a kind of the Markov chain (see Feller [2]).

Theorem 1. The sub{optimization process is the Markov chain with stochastic matrix
P = fpijg1�i;j�s. SA represents a set of its absorption states and ST a set of its transient ones.

Theorem 2. The sub{optimization process converges in probability to the sub{optimum state
set SA.

4 Mutation operator

Let n 2N be the system dimension and
�!
l ;�!u 2 Zn the lower and upper bound vectors de�ned

above. Let �!x 2 Zn be a state of the constrained integer system. Let �!g 2 (R+)n be a vector
of positive gains. Let

��!
rnd 2 (0; 1)n be a continuous random vector variable with uniform

distribution. Let � : R! Z, � : (0; 1) ! R, and �k : Z! flk; lk + 1; : : : ; ukg for 1 � k � n be
functions satisfying

8� 2 R : b�c � �(�) � d�e;

�(�) is continuous increasing function on (0; 1);

8� 2 (0; 1) : �(�) = ��(1� �);

lim
�!1�

�(�) = +1;

8k; q 2 Z; 1 � k � n; lk � q � uk : �k(q) = q:

Then the mutation is de�ned as an operator producing a new state �!x � 2 Zn by the rule

x�k = �k(�(xk + gk�(rndk))) (1)

where 1 � k � n. The mutation operator is used to generate a certain number of new states
close to the starting state �!x 2 Zn.

5 Rank selection operator

Let < S; f; f�; P > be a sub{optimization process. Let S be the constrained integer system of
dimension n > 1. The population P is de�ned as any random subset of S consisting of r > 1
unique states. Let P be any population of size r. The ordered population O is de�ned as the
r-tuple (Ek1 ; Ek2 ; : : : ; Ekr) formed from the population P, when fkj � fkj+1 for all 1 � j < r.
For the sake of clarity the ordered population can be rewritten as (E(1); E(2); : : : ; E(r)). Let



T > 0 be a real parameter called the rank temperature. Let rnd 2 (0; 1) be a continuous
uniformly distributed random variable. Let � : [0; 1) ! R+

0 be a continuous increasing function
satisfying

�(0) = 0; lim
�!1�

�(�) = +1:

Let O be any ordered population of size r. Let c 2N; 1 � c � r, be an integer-valued random
variable generated by repeating the rule

c = dT�(rnd)e until c � r:

Let Ej be a selected state. Then the rank selection operator is de�ned by the following
rules:

(i) fk1 � f� ) Ej = E(1), (2)

(ii) fk1 > f� ) Ej = E(c). (3)

It is evident that the operator enables to select the state Ej from an ordered population O.

6 Generalized 3R method

Let < S; f; f�; P > be a sub{optimization process. Let S be the constrained integer system with
dimension n > 1. Let Ei 2 ST be a transient state. Let Oi be any ordered population of size
r produced by the repeated mutation of the state Ei according to (1). Then the Generalized
3R method is de�ned as the rank selection of a state Ej from the ordered population Oi using
the rules (2) and (3). The generalized 3R method is designed to be sub{optimization process
strategy. Applying generalized 3R method to any sub{optimization task, the sub{optimization
process is obtained. Then the convergence to any sub{optimum state is guaranteed.

Theorem 3. When applied to any sub{optimization task the Generalized 3R method generates
the sub{optimization process.

One step of Generalized 3R method can be represented in Pseudo{Pascal as

function G3RStep(E:state;r:integer;T:real):state;
var

Enew:state;
fnew:real;
O :ordered population;
k:integer;

begin
MakeEmpty(O);
for k:=1 to r do begin

repeat
Enew:=Mutation(E)

until Enew 62 O;
fnew = f(Enew);
Insert(O,Enew,fnew);

end;
G3RStep:=RankSelection(O,T);

end;



The Generalized 3R method is then

function G3R(r:integer;T:real):state;
var

E:state;
begin

E:=RandomState;
while E 2 ST do

E:=G3RStep(E,r,T);
G3R:=E;

end;

7 Recommended design of Generalized 3R

The mutation and rank selection operators can be realized using functions

�(�) = b� + 1=2c;

�(�) = tan��=2;

�(�) = tan �(� � 1=2);

�k(q) = q +Q(uk � lk + 1)

where

Q = b
uk � q

uk � lk + 1
c:

It is easy to verify the functions have the necessary properties. There is another possibility
how to improve the Generalized 3R method using the multiprocessor computing system with
r > 1 processors. Then any processor evaluates the objective function in unique state within
one step of Generalized 3R method. It results the r times increasing of computation speed.
The optimum size of ordered population is equal to the number of parallel processors in this
case.

8 SOP parallelization

It is possible the Generalized 3R method doesn't reach any sub{optimum state when the number
of objective function evaluations is constrained. It is typical when the NP{complete problem
(Garey, Johnson) [4] is solved for large dimension n, the objective function is too complex, the
computing system is slow or the computing time is restricted. This e�ect can be generalized to
any sub{optimization process. The parallelization of the sub{optimization process can improve
the reliability of sub{optimum �nding in these cases.

Let < S; f; f�; P > be given sub{optimization process. Let r 2 N be a number of evaluation of
f(�!x ) in every step of the SOP. Let H 2 N be given number of independent parallel realizations
of the SOP. Then the vector

�!
E = (Ei1 ; : : : ; EiH ) 2 S

H is called multi{state. Initial multi{
stateis taken at random and denoted as

�!
E 0. Terminal multi{state

�!
Em is de�ned as a

multi{state reached in m{th step and satisfying the condition

9k 2 f1; : : : ;Hg : Eik 2 SA:

Then parallel sub{optimization process (PSOP) < S; f; f�; P;H > is de�ned as a Markov
chain on SH generating

�!
E new from

�!
E by independent SOP's using the rule

Enew
ik

= SOP (Eik)



for 1 � k � H. Then the PSOP generates a multi{state sequence
�!
E 0; : : : ;

�!
Em. It is easy

to recognize the PSOP with H = 1 is just the original SOP. Every step of PSOP includes
Hr evaluations of the objective function and then reaching the terminal multi{state includes
Hrm function evaluations. The question about ideal value of H minimizing the number of
evaluations within PSOP is also under the scope of this paper.

Theorem 4. Let < S; f; f�; P > be given SOP. Let F (k) be distribution function of its step
number. Let < S; f; f�; P;H > be adjoined PSOP. Let F �(k) be distribution function of its
step number. Then F �(k) = 1� (1� F (k))H .

Theorem 5. Let < S; f; f�; P;H > be given PSOP. Let F (k) be distribution function of its
SOP step number. Let F (�1) : [0; 1) ! N0 be pseudo{inversion of F satisfying F (�1)(p) = min
with respect to F (F (�1)(p)) � p for all p 2 [0; 1). Let m� be given constrain of the PSOP step
number. Let 0 < � < 1 be given upper bound of the PSOP failure probability after m� parallel
steps. Then m� � F (�1)(1��1=H) and the minimum number of objective function evaluations
is

Ne = HrF (�1)(1� �1=H):

Let < S; f; f�; P > be given SOP. Let F (k) be distribution function of its step number. Let
< S; f; f�; P;H > be adjoined PSOP. Let F �(k) be distribution function of its step number.
Let 0 < � < 1 be given upper bound of the PSOP failure probability. Finding

H� = arg min
H2N

HF (�1)(1� �1=H)

is called optimum parallelization of SOP. Let bF (k) be an approximation of F (k). Finding

bH = arg min
H2N

H bF (�1)(1� �1=H)

is called approximated parallelization of SOP.

Theorem 6. Let 0 < �; pfail < 1. Let

lim
k!1

F (k) � 1� pfail:

Then

H� �
ln�

ln pfail
:

Let 0 < pfail < 1 be failure probability of given SOP. Let 0 < � < 1 be given upper bound of
PSOP failure probability. Then heuristic parallelization is de�ned as using

H+ = d
ln�

ln pfail
e

within the PSOP. Then the poor knowledge of statistical properties of the SOP enables to
make �rst optimistic experiments with parallelization. There is necessary to use parametric
statistical models of F (k) for future detail analysis.



9 Parallel 3R method

The general principle of SOP parallelization can be applied to any sub{optimization process.
When applied to sub{optimization task solving the Generalized 3R method can be paralleled,
too. The result is the Parallel 3R method. Its realization on a single processor can be writen
as

function P3R(H,r:integer;T:real):state;
var

E:array [1..H] of state;
i:integer;

begin
for i:=1 to H do

E:=RandomState;
while AllTransient(E) do

for i:=1 to H do
E[i]:=G3RStep(E[i],r,T);

for i:=1 to H do
if E[i] 2 SA then

P3R:=E[i];
end;

Parallel 3R method comes to Generalized 3R method for H = 1. Parallel 3R method can be
also realized on any multiprocessor system in pure parallel style using Hr processors for the
objective function evaluations. It results the Hr times increasing of the computation speed.

10 Matlab realization of Parallel 3R method

The Parallel 3R method can be realized on single processor in Matlab as a general tool for
sub{optimization in constrained integer spaces. The Parallel 3R library consists of four general
functions

xsub,fsub=Parallel3R(l,u,fobj,fopt,H,r,T,g);

xnew=Step3R(x,l,u,fobj,fopt,r,T,g);

xnew=RankSelect3R(X,f,T);

xnew=Mutation3R(x,l,u,g);

The objective function can have any name and is called as

F=ObjFunction(x);

where the input and output parameters are described as

x ...... integer state vector (1,n)

xnew ... new integer state vector (1,n)

l ...... lower bound vector (1,n)

u ...... upper bound vector (1,n)

fobj ... name of the objective function as string

fopt ... sub-optimization threshold value f* as scalar

xsub ... sub-optimum solution as vector (1,n)

fsub ... sub-optimum value as scalar

H ...... number of parallel realizations as positive integer

r ...... ordered population size as positive integer



T ...... rank temperature as positive number

g ...... gain vector of positive numbers (1,n)

X ...... matrix of population (r,n)

f ...... vector of population values (r,1)

F ...... objective function value as scalar

The Parallel3R function calls many times Step3R one while Step3R function calls r-times the
objective function, many times the Mutation3R function and onetime the RankSelect3R one.

11 Conclusions

The Parallel 3R method is an e�ective tool for sub{optimum state �nding. The recommended
values of parameters are 1=8 � T � 4; 3 � r � 10; 1=100 � gk � 2 while the parameter H
depends on the complexity of solved sub{optimization task.
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