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Abstract. The paper is devoted to solving the traditional task of linear regression. It is useful

to remove the absolute term from the regression formula or to specify the kernel inputs. The

solution is obtained by regularization or using the pseudo{inverse matrices. Four approaches

to given tasks are de�ned and compared. All the algorithms are realized in Matlab system.
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1 Introduction

The linear regression is a standard tool for the statistical data processing. But the data are
sometime ill{posed because of poor planning of experiments or over{�tting e�ect. It occurs in
case of linear neural network learning when the number of training patterns is less than the
number of network inputs. The problem of reducing the number of input is also interested in
large class of AI tasks. The input signals have various degrees of accessibility and the neural
network pruning can be based on complete or partial regularization. Four approaches to this
general problem are studied in this paper. All the algebraic calculations were done in the
Matlab system. The features of given results are demonstrated on a provocative over{�tting
example of two{point parabola �tting.

2 Four Approaches to Linear Data Fitting

Let m;n 2 N be the number of samples and the number of variables. Let

X = fxijg1�i�m;1�j�n

�!y = fyig1�i�m

be the input data matrix and the output data vector. There are four approaches how to solve
the data �tting task in sense of least sum of squares technique.

2.1 Classic LSQ Approach

The model also includes the bias a0 and has the form

yi = a0 +
nX

j=1

ajxij:

Let P = (
�!
1 jX) be expanded input matrix. Then we solve P�!a = �!y using residuum vector

�!r = P�!a � �!y . Finding minimum value of the residuum vector norm k�!r k we obtain classic
but danger solution

�!a = (P0P)�1P0�!y :

The solution isn't de�ned when det(P0P) = 0.



2.2 Regularized Approach

Using the same model we �nd the minimum value of the norm k�!a k with respect to the constrain
k�!r k � C. The regularized solution

�!a � = (P0P+ �I)�1P0�!y

is de�ned for all real � > 0. The regularized approach has two limit cases �!a 0+ = P+�!y and
�!a +1 =

�!
0 where the upper symbol + denotes the Moore{Penrose pseudo{inversion.

2.3 Bias-less Approach

The main disadvantage of regularization is the convergence of vector �!a to zero vector for large
parameter �. It results the convergence of a0 to zero, too. In large scale of application there is
useful when a0 converges to the mean value of output yi. Let

�j =
1

m

mX
i=1

xij;

� =
1

m

mX
i=1

yi:

The bias{less model has the form

yi � � =
nX

j=1

bj(xij � �j):

De�ning qij = xij��j; zi = yi�� we solve Q
�!
b = �!z using the residuum vector �!s = Q

�!
b ��!z .

Finding minimum value of the norm k
�!
b k with respect to the constrain k�!s k � D the another

regularized solution is obtained as

�!
b � = (Q0Q+ �I)�1Q0�!z

for all real � > 0. There are also two limit cases
�!
b 0+ = Q+�!z and

�!
b +1 =

�!
0 . The bias can

be additionally recalculated as b0� = � � �!� �
�!
b �. Then the bias value comes to the average

output value for large values of �.

2.4 Kernel weight minimization

Let n1 � n be the number of kernel input variables and n2 = n+1� n1 be the number of free
input variables. Then the matrix P can be rearranged in columns and then split to the kernel
and free parts as (FjG). The split model has the form

yi =
n1X
j=1

ujfij +
n2X
j=1

vjgij :

It is necessary to regularize the task F�!u +G�!v = �!y using the residuum vector
�!w = F�!u +G�!v ��!y . Finding the minimum of kernel weight norm k�!u k with respect to the
constrain k�!w k � E the adequate regularized solution is obtained as

�!u � = H�(
�!y �G�!v �);

�!v � = (G0T�G)+G0T�
�!y

where H� = (F0F+ �I)�1F and T� = I� FH� for all real � > 0. The limit values for large �
are �!u +1 =

�!
0 and �!v +1 = G+�!y . It means the kernel weights are pruned while the free

weights are �tted.



3 Matlab Realization

Four functions were realized in the Matlab system. Using the previous notation they are called
as

[a]=ClassicLSQ(X,y);

[a]=RegularizedLSQ(X,y,lambda);

[b,b0]=BiasLessLSQ(X,y,lambda);

[u,v]=KernelLSQ(F,G,y,lambda);

The functions can be called with lambda=0, lambda=+inf or without parameter lambda. The
four case discussion is realized inside the functions. The functions return zero vectors in case of
failure. The �rst two functions were built only for the demonstration of their poor properties
while the remaining two functions are eÆcient tools for the ill{posed linear regression.

4 Illustrative Example

There is diÆcult to understand the sense of various approaches to �tting task from their formal
description. The four techniques were compared on naive example of �tting parabola using
only two points (�1;+1) and (+1;+2). It is typical rank de�cient problem with two inputs
x1 = x; x2 = x2, three parameters a0; a1; a2 but only two equations

a0 � a1 + a2 = 1;

a0 + a1 + a2 = 2:

This system of equations has in�nite number of solutions. One of them (a0; a1; a2) = (3=2; 1=2; 0)
is intuitively preferred and leads to line �tting. Because of various complexity of input signals
there are two possibilities how to set the task kernel. The kernel can consist of two inputs
x1 = x; x2 = x2 or only one input x1 = x2 in the second case. The input matrices are de�ned
in Matlab notation as

X=[-1 +1;+1 +1]; y=[1;2];

F1=[-1 +1;+1 +1]; G1=[+1;+1];

F2=[+1;+1]; G2=[+1 -1;+1 +1];

The �rst classic LSQ approach gives no result because of det(P0P) = 0.

The second regularized approach gives various results depending on regularization parameter �.
The general solution is

(a0; a1; a2) =

�
3

�+ 4
;

1

�+ 2
;

3

�+ 4

�
:

Then

y =
3(1 + x2)

�+ 4
+

x

�+ 2
:

This result is against intuition because of a0 � 3=4 < 3=2 and a2 > 0.



The third bias{less approach produces

(b0; b1; b2) =

�
3

2
;

1

�+ 2
; 0

�
:

Then

y =
3

2
+

x

�+ 2
:

This result comes to the intuitive linear solution for � ! 0+. When � is large the �tting comes
to constant model y = 3=2.

The fourth approach with linear and quadratic column in the kernel gives the result

(u1; u2; v1) =

�
1

�+ 2
; 0;

3

2

�

which is the same �tting as in the bias{less approach. Using only the quadratic column in the
kernel we have (u1; v1; v2) = (0; 3=2; 1=2) and then

y =
3

2
+

x

2

for all � > 0.

5 Conclusions

Bias elimination or kernel speci�cation is a good preprocessing for �nding the regularized
solution of ill-posed problems. The new Matlab functions BiasLessLSQ and KernelLSQ are
recommended for the linear �tting stabilization. The zero value of parameter lambda corre-
sponding to the condition �! 0+ is recommended for the �rst experiments with any data set.
From the pedagogical point of view, refusing of regularization principle often gives no results
and using regularization principle in general form gives poor results. Our study brings the
ways how to solve this sad dilemma.
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