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Abstract 

A brief information about an ongoing project of the European Union under the 

Leonardo da Vinci Programme - dedicated to the creation of the electronic learning tool 

aimed to the vocational training of engineering mechanics using Matlab - is presented. The 

activities of the team of experts from Czech Republic, Germany, Belgium and Sweden are 

resulting in the creation of an ‘electronic book’ that will be soon available at a web page 

address. An example from the text devoted to mechanical vibration is given. 

 

Introduction 

Although the basic laws of mechanics are known since Galileo and Newton, there are 

many novel concepts available today in applications of laws of mechanics to complicated 

problems of engineering practice. At the same time the increasing availability of computers in 

engineering community is not always fully accompanied by the proper knowledge of 

numerical and programming techniques needed to employ the mechanical principles 

efficiently.  

To improve the state of affairs the authors of the project employed Matlab as a tool 

that efficiently deals with matrix algebra mathematics and has a very high level of 

programming primitives. As such it is almost predestined to be an excellent instrument for 

learning how to implement mechanical and numerical principles needed for mastering 

efficient approaches to a wide class of mechanical problems in engineering.  

Authors tried to present each topic, accompanied by many examples and worked-out 

studies, in a more or less self-contained form. The reader, however, is assumed to have an 

elementary knowledge of mechanics, calculus, differential equations and Matlab 

programming. The Matlab programs, accompanying the text, are used not only for the 

computation itself but also for reading. They are not written in the most possible efficient 

way, the emphasis is given to the explanation of mechanical and programming principles. 



 

An example taken from the Vibration chapter is as follows 

Example – determine the natural frequencies of a thin cantilever beam using the finite 

element method. Compare the results with those obtained analytically, treating the beam as a 

continuous system, in the paragraph dealing with analytical approach. 

 

 A cantilever beam is sketched in Fig. 1. Its left end is free, while the right one if 

clamped. The length of the beam is L = 1m. Assuming a rectangular cross sectional area with 

the thickness b = 0.01 m and the height h = 0.1 m, we have the cross section bhA =  and the 

planar moment of inertia of the cross section 12/3bhI = . The Young’s modulus is 

211 N/m101.2=E  and the density is 3kg/m7800=ρ . The number of elements is set to 10, 

initially. 

 

 

Fig. 1 
A cantilever beam discretized by beam elements 

 

For the computation we will employ a four-degree-of-freedom beam element depicted 

with numbering of its local degrees of freedom in Fig. 2. When modelling the beam we will 

assume that all the elements are of the same geometry and of material properties. 

 

Fig. 2 
Planar beam element with four degrees of freedom 
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Generalized displacements numbered 1 and 3 are transversal displacements of the 

beam element, those numbered 2 and 4 are rotations of the deflection curve. The length of the 

element is l .  

The mass and stiffness matrices of the element are derived in numerous finite element 

references as in [1], [2] and [3]. This element corresponds to Bernoulli-Euler theory for thin 

beams and thus cannot be subjected to an axial force. The consistent mass matrix and the 

stiffness matrix are as follows. 
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The Matlab form of the mass and stiffness matrices could have the following appearance 
 
function [xme]=VBEmasbeam(ro,l1,A);  
% assemble local mass matrix of a beam 
% element with 4 dof's 
% ro ... density 
% l1 ... element's lenght 
% A .... cross sectional area 
xme=zeros(4); 
l12=l1*l1; 
konst=ro*l1*A/420; 
xme(1,1)=156; xme(1,2)=22*l1; xme(1,3)=54;    xme(1,4)=-13*l1; 
              xme(2,2)=4*l12; xme(2,3)=13*l1; xme(2,4)=-3*l12; 
                              xme(3,3)=156;   xme(3,4)=-22*l1; 
                                              xme(4,4)= 4*l12; 
% symmetry 
for i=1:4, 
  for j=i:4, 
    xme(j,i)=xme(i,j); 
  end ; 
end ; 
% constant multiplication 
xme=konst*xme; 
% end of VBEmasbeam.m 

 
function [xke]=VBErigbeam(ey,l1,jp); 
% assemble a local stiffness matrix  
% of a beam element with 4 dof's 
% ey ... Young's modulus 



% l1 ... element's length 
% jp ... planar moment of inertia of the cross section 
xke=zeros(4); 
l12=l1*l1; l13=l12*l1; 
konst=2*ey*jp/l13; 
xke(1,1)=6; xke(1,2)=3*l1;  xke(1,3)=-6;    xke(1,4)= 3*l1; 
            xke(2,2)=2*l12; xke(2,3)=-3*l1; xke(2,4)=   l12; 
                            xke(3,3)= 6;    xke(3,4)=-3*l1; 
                                            xke(4,4)= 2*l12; 
% symmetry 
for i=1:4, 
  for j=i:4, 
    xke(j,i)=xke(i,j); 
  end ; 
end ; 
% constant multiplication 
xke=konst*xke; 
% end of VBErigbeam 
   

 Assumed local element numbering in Fig. 2. and consecutive numbering of global 

dof’s from left end of the beam to the right, results in following code number set which is 

listed bellow 

 
element code numbers 
 
1  1 2 3 4 
2  3 4 5 6 
3  5 6 7 8 
… 
k  2k-1 2k 2k+1 2k+2 
… 

 
Generation of code numbers and the assembling of global mass and stiffness matrices 

are implemented in the procedure VBEglobeam.m  . 

 
function [xk,xm]=VBEglobeam(kmax,imax,xke,xme); 
% assemble global stiffness and mass matrices  
% for a thin cantilever beam assembled of kmax  
% identical beam elements with 4 DOF 
% clear arrays 
xk=zeros(imax); xm=zeros(imax);  
% loop over elements 
for k=1:kmax 
% code numbers of k-the element 
  k2=2*k; 
  ic=[k2-1 k2 k2+1 k2+2]; 
% assembling 
  xm(ic,ic)=xm(ic,ic)+xme; 
  xk(ic,ic)=xk(ic,ic)+xke; 
end 
% end of VBEglobeam.m 
 

The main program VBEbefre2.m  calls the above procedures, implements boundary 

conditions and computes all eigenvalues of the cantilever beam by finite element methods and 



compares the results with those obtained analytically by VCRroots.m  program. Notice, that 

the number of elements, kmax, is a variable that can be easily changed. 

 
% VBEbefre2.m 
clear 
% calculate eigenfreuencies of a thin cantilever beam  
% composed of kmax beam elements 
% input data 
kmax=10;   % number of elements 
imax=2*kmax+2; % number of global dof's 
L=1;    % beam's length in [m] 
l1=L/kmax;  % element's length 
ey=2.1e11;  % Young's modulus in [N/m^2] 
% a rectangular cross section of a beam 
b=0.01;   % thickness 
h=0.1;   % height 
A=b*h;   % cross sectional area in [m^2] 
jp=h*h*h*b/12; % planar mom. of inertia in [m^4] 
ro=7800;   % density in [kg/m^3] 
 
% analytically calculated values computed by VCRroots.m 
% and expressed in xbar(i) = lambda(i)*L variables 
% were copied here 
xbar= [1.875104068706770e+000 ... 
 4.694091132933031e+000 ...  
 7.854757438070675e+000 ... 
 1.099554073487850e+001 ... 
 1.413716839104652e+001 ...  
 1.727875953327674e+001 ...   
 2.042035225104147e+001 ... 
 2.356194490180130e+001 ...  
 2.670353755550106e+001 ... 
  2.984513020909291e+001 ... 
  3.298672286269287e+001 ...  
 3.612831551628358e+001 ... 
   3.926990818348858e+001 ... 
 4.241150082346221e+001 ...  
   4.555309347705200e+001 ...  
   4.869468613064180e+001 ...  
   5.183627878423159e+001 ...  
   5.497787143782138e+001 ...  
   5.811946409141117e+001 ...  
   6.126105674500097e+001 ...  
   6.440264939859077e+001 ...  
   6.754424205218055e+001   ]; 
% auxiliary constants  
c0=sqrt(ey/ro); j=sqrt(jp/A); 
b2=xbar.*xbar; 
% analytically calculated angular frequencies [rad/s]  
om=b2*c0*j/(L^2); 
% 
% assemble local stiffness matrix  
[xke]=VBErigbeam(ey,l1,jp); 
% assemble local mass matrix 
[xme]=VBEmasbeam(ro,l1,A); 
% assemble global matrices 
[xk,xm]=VBEglobeam(kmax,imax,xke,xme); 
% 
% boundary conditions - the right hand side is clamped 



% delete the last two rows and columns of global matrices  
% pointer to deleted dof's  
bound = [imax-1 imax]; 
xk(bound,:)=[]; xk(:,bound)=[]; 
xm(bound,:)=[]; xm(:,bound)=[]; 
% 
% calculate eigenvalues by the finite element formulation 
ei=eig(xk,xm);    % eigenvalues  
% sorted natural angular frequencies [rad/s] 
ef=sort(real(sqrt(ei))); 
% sorted natural angular frequencies [Hz]  
f=ef/(2*pi);   
ix=1:20; % plotting counters 
% plot results 
% plot analytical and FE natural frequencies 
% for all available FE values  
figure(1)  
subplot(1,2,1) 
plot(ix,ef(ix), 'ro' , ix,om(ix), 'kx' , 'markersize' ,8); 
title( '        o - FEM, x - analytical' ); 
xlabel( 'counter' ); ylabel( 'angular frequencies' ); 
% compute and plot relative errors  
% for the first 9 frequencies  
ix = 1:9; r=zeros(size(ix)); 
for i=ix 
  r(i)=100*(ef(i)-om(i))/om(i); 
end 
subplot(1,2,2) 
plot(ix,r, 'ko' , 'markersize' ,8);  
title( 'relative errors for FE frequencies [%]' ); 
xlabel( 'counter' ); 
print VBEbefre2 -deps; print VBEbefre2 -dmeta; 
% print results for the first 9 frequencies 
format long e 
delete befre2.dat 
diary befre2.dat 
disp( '    counter, analytical frequencies, FE frequencies' ) 
disp([ix' om(ix)' ef(ix)]) 
diary off 
format short e 
% end of VBEbefre2.m 
 
 

The output of VBEbefre2.m  prints the first 9 natural frequencies of a thin cantilever 

beam computed analytically and by the finite element method.  

 
    counter, analytical frequencies, FE frequencies 
    1    5.266504690912090e+002    5.266509194371887e+002 
    2    3.300462151726965e+003    3.300571391657554e+003 
    3    9.241389593048039e+003    9.243742518773286e+003 
    4    1.810943523875022e+004    1.812669270993247e+004 
    5    2.993619402962561e+004    3.001165614576545e+004 
    6    4.471949023233439e+004    4.496087393371327e+004 
    7    6.245945376065551e+004    6.308228786109306e+004 
    8    8.315607746908118e+004    8.451287572802173e+004 
    9    1.068093617279631e+005    1.092740977881639e+005  
 



The graphical output is in Fig. 3.  In the left subfigure there are all natural frequencies 

obtained by finite element calculation – there are 20 of them in this case, i.e. for 10 beam 

elements. (Recall that discrete systems have a frequency spectrum that always consists of a 

finite number of frequencies only.) Frequencies computed by finite element method are 

compared with the first 20 corresponding frequencies obtained by treating the cantilever beam 

as continuum. The low frequencies are almost identical – in the right subfigure, where relative 

differences of the first 9 frequencies are presented, one can observe that the maximum 

difference is less than 2.5%. This is a marvellous achievement considering that only 10 

elements were employed for the discretization and subsequent computation. In the upper part 

of the spectrum the frequencies are diverging, those due to finite element modelling are 

higher. This is due to the fact that the discrete finite element model is stiffer than the 

continuous one.  

 
Fig. 3 

Comparison of analytical and FE approaches to natural frequency computation of a thin 
cantilever beam 

 
Since only the lowest frequencies are usually of main engineering interest, we should 

not be depressed by the fact that the frequencies in the upper part of the spectrum are differing 

a lot. If we increased the number of elements we would get absolutely more finite element 
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frequencies that agree well with those of a continuous approach. You should find out, 

however, that only the frequencies from the lower third of the spectrum would exhibit a good 

agreement. Try to observe this phenomenon by changing the value kmax in the program. 

We are often tempted to think that the continuous model is exact and the finite element 

one approximate only. That’s true, in a sense. We should, however, bear in mind that we are 

comparing two models here and not our computations with reality and also that continuous 

model based on Bernoulli-Euler assumptions is as good as far as these assumptions are not 

violated. Nevertheless checking finite element results with those obtained by continuous 

models (if it is possible) is a good practice. 
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