
MATLAB BASED PETRI NET ANALYSIS

��������	�
����
Center for Applied Cybernetics, DCE FEE

Czech Technical University in Prague

��� �����	
������

Petri Nets make it possible to model and visualize behavior comprising concurrency, synchronization and
resource sharing. They are convenient tools to model parallel algorithms and communication protocols.
Petri Nets offer profound mathematical background originating namely from linear algebra and graph theory.
Murata [5] provides a good survey on properties, analysis and applications of Petri Nets.
Various tools listed on http://www.daimi.au.dk/~petrinet/ perform analysis and simulation of various Petri Net
classes. Very often they offer convenient graphical environment and sometimes they tend to be too complex. On
the other hand these tools have very limited possibility of extensions to problems specifically needed for given
application. Some of them are accessible in source code, but these projects are relatively large and difficult to
modify.
Approach adopted in this article is based on the three steps:
• Petri Net modeling in convenient graphical design tool (e.g. Pmaker)
• export to matrix representation in Matlab
• Matlab based Petri Net analysis and visualization of simulation results.
This approach allows to organize a work in a modular way, to use standard libraries and to build own tools. In
other words we are no more using a 'universal' tool but we are programming our own tool with support in a
modeling and visualization stage. This is quite more convenient because no tool is universal enough.
This article is organized in two principal sections. One is based on Petri Net (PN) structural properties and one
on Stochastic Timed Petri Net (STPN) token player. Various examples used in laboratory exercises of the subject
Distributed Control Systems are shown through the text.

�� �������������	�������
��
���������������

The structural properties are those that depend on the topological structure of Petri Nets. They are independent of
the initial marking M0 in the sense that these properties hold for any initial marking or are concerned with the
existence of certain firing sequences from some initial marking. Thus these properties can often be characterized
in terms of the incidence matrix C and its associated homogeneous equations or inequalities.

����� ����	
����	
�	���

Structural properties of Petri Nets are given by linear invariants introduced by Lautenbach [10]. In practice we
are usually interested in a positive version of linear invariants defined as follows:
Let a finite PN system with P={P1,P2, ... , Pm} and T={T1,T2, ... ,Tn} be given then a vector f ∈ Zm is called a
positive P-invariant of the given PN, iff: CT • f = 0 ∧ fi ≥ 0 ∀ i=1,...,m.
In this article, furthermore, only P-invariants will be considered. To obtain T-invariants, it is needed to transpose
the matrix C and the use the same method.
More generally a given invariant f can be written as a composition of invariants called generators
In general there are two approaches to find positive P-invariants (Matlab algorithms source code for both
approaches is available from the author upon request):
1) Find a basis of a certain type and then construct the generators by varying the basis vectors [12].
2) Find a set of positive P-invariant generators by combinations of all input and all output places. This algorithm
was published in [11]. It generalizes in some sense the Jensen's rules, offering a systematic way to finding all
invariants.

����� �����������	���

Let a finite PN system with P={P1,P2, ... , Pm} and T={T1,T2, ... ,Tn} be given. A place Px is called an implicit
place iff the two following conditions hold:
1) any reachable marking M(Px) is equal to a positive linear combination of markings of places from P
2) M0(Px) does not impose any additional condition to fire its output transitions

����� ��	������	����	����

Figure 1 shows a Petri Net model of two communicating
computers in deadlock situation. The core of the problem is
that both computers are ready to receive but none is ready to
send.
When analyzing PN from Figure 1 in Matlab we can obtain
positive P-invariant generators specifying conservative
components (subnet preserving number of tokens):
• {P1,P2}
• {P3,P4}
• {P3,P5,P2,P6}
As a consequence the following equations hold for marked PN:
M(P1) + M(P2) = 1
M(P3) + M(P4) = 1
M(P3) + M(P5)+M(P2)+M(P6) = 0
PN given in Figure 1 is a marked graph, so the third equation
proofs that the system is not live because this conservative
component does not contain any token.

Figure 1: Two communicating computers in
deadlock

����� ����
������	
	�����	�����

Consider an example algorithm given by the
following pseudo-code:

for k=1 to n
 A(k)=fce(G(k-1))
 B(k)=fce(A(k),E(k-1))
 C(k)=fce(A(k))
 D(k)=fce(D(k-1),C(k))
 E(k)=fce(B(k),D(k))
 F(k)=fce(C(k))
 G(k)=fce(E(k),F(k),C(k))
 H(k)=fce(I(k-1))
 I(k)=fce(H(k))
endfor

The code is represented by the the PN model
given in Figure 2. Places correspond to the
data and transitions correspond to the code.

Figure
2: Algorithm data dependencies

Markings correspond to the presence of valid data computed by the previous transition or assigned during
algorithm initialization. The cyclic algorithm can be scheduled to unlimited (but possibly minimal) number of
processors while analyzing PN from Figure 2 in Matlab:
• reduce implicit places (e.g. C* in Figure 2)
• reduce self-loop places (e.g. D* in Figure 2)
• find positive P-invariant generators
• find optimal schedule by assigning processors to positive P-invariant generators (number of processors

correspond to the number of tokens in the positive P-invariant)

����� ������������

Figure 3 shows two nodes accessing the media with
the use of token ring access method. The media
activity is represented by P9 and by P10 (Bus_Idle
and Bus_busy). These two places are in fact implicit -
they do not contribute to the system behavior. This is
proven by the following reasoning:
• from positive P-invariant generators
M(P1)+M(P5)+M(P10) = 1
M(P1)+M(P3)+M(P5)+M(P7) = 1
• by substitution the following holds
M(P10) ≥ M(P3)
1-M(P1)-M(P5) ≥ 1-M(P1)-M(P5)-M(P7)
M(P7) ≥ 0
• in similar way
M(P10) ≥ M(P7)
1-M(P1)-M(P5) ≥ 1-M(P1)-M(P3)-M(P5)
M(P3) ≥ 0
• as consequence P10 is implicit
• in similar way P9 is implicit too

Figure 3: Token Ring access method

��� ���
������������	����������������������

Stochastic Timed Petri nets used in this article contain either zero, timed or stochastic timed transitions with
uniform distribution. There are two types of non-zero time transition behavior given in literature. The definition
used in the article, considering that transition does not reserve the tokens in input places, is described e.g. in [6].
The functionality of the model under consideration is fully specified by the interpretation of the token player
given in Matlab like syntax by Algorithm 1.
Algorithm 1:
[Seq,M] = PlaySTPN(Pre, Post, M0, TimeT, TypeT, ticks)
%Pre - Matrix of preconditions, Post - Matrix of postconditions, M0 - Vector of initial markings
%TimeT - Vector of transition time, TypeT - Vector of transitions types (zero / timed / stochastic)
%ticks - Number of simulation ticks
%Seq - Firing sequence, M - Markings at the end of simulation

%1-initialization
M=M0;
for j=1:number of transitions
 CountT(j)=initial counter value
end
%Main Cycle
while t<=ticks
 %2-generate vectors x-enabled transitions and y-firable transitions
 for j=1:number of transitions
 if transition j is enabled
 then x(j)=1
 if CountT(j)=0 then y(j)=1
 else y(j)=0
 end
 else x(j)=0
 CountT(j)=initial counter value
 end
 end
 %3-decrement counters or change markings
 if y=zeros
 then %decrement counters for enabled transitions in x
 CountT=CountT-1

 t=t+1
 else %change marking by firing one transition
 f = randomly chosen firable transition in y
 M = M + Post(:,f) - Pre(:,f)
 %add fired transisiton to firing sequence
 Seq=[Seq,f]
 end
end

With respect to the Algorithm 1 the following drawbacks should be mentioned:
In the case of effective conflict, no token reservation is assumed. It means that the first fireable transition
(enabled & counter=0) wins. When “reservation” behavior is needed, then zero time transition should precede
timed or stochastic transition.
In the case of the actual conflict representing the system non-determinism (two and more fireable transitions in
conflict) the winning transition is chosen in random manner. It means that one possible firing sequence is chosen
among several ones.
Initial transition counter CountT(j) is either 0 (in the case of zero-time transition), or TimeT(j) (in the case of
timed transition) or integer number from interval <1,TimeT(j)> (in the case of the stochastic transition with
uniform distribution).

����� �
���������� ��
������!"#��������

The STPN model of one node MAC layer using predictive p-persistent CSMA is shown in Figure 4. Zero time
transitions are not labelled (e.g. T1, T2, T3), timed transitions are labelled by “t” with corresponding time (e.g. 5
ticks in the case of T4) and stochastic transitions are labelled by “s” with corresponding upper margin of uniform
distribution interval. Figure 4 consists of the following parts:
Idle Channel Detection Model is situated on the top of the picture (P3 - P5, T2 - T4).
Left side of the figure represents the backlog estimator (P17 - P27, T18 – T36).
Physical layer model is on the right side (P8 – P12, T8 – T11).
Medium Access Model is on the bottom of the figure (P13 - P16, T12 – T17).

Figure 4: STPN model of predictive p-persistent CSMA

The channel backlog (BL) corresponds to mean value of the predicated channel load. All nodes increment the
estimated backlog by one when receiving request frame (owing to the broadcast capability of the bus topology, a
particular node is aware of this frame even if it is not destination node) or sending the request frame. The
estimated channel backlog is decremented by one at the end of each packet cycle (request and response frame).
Our model assumes that all frames have the same length (10 ticks) and that all packets are acknowledged (T9 –
request, T10 - response).
Because of lack of space only 5-level backlog estimator is modelled. Places P17, P18, P19, P20, and P21 represent
the state of the backlog estimator and correspond to the current value of channel backlog BL. Place P17
represents BL=1, P18 ~ BL=2, and so on. Message Frame_OK (place P27), indicates a successfully received
request frame as a broadcast message from the physical layer (from the transition T9 in sending node) and
transitions T18, T19, T20, T21 increment current value of backlog. Transition T23, T24, T25, and T26 are timed
transitions with deterministic firing time corresponding to the packet cycle. Via T28, T30, T32, T34, or T36
predictive p-persistent CSMA generates random time delay from random timing interval, which is dependent on
the estimated channel backlog. Please notice, that just one of the transitions T28, T30, T32, T34, T36 is fired at a
given time instant.

Figure 5: Interconnection of five nodes

Simulated network consisting of five nodes is shown in Figure 5. Broadcast communication of request frame is
realized by arcs going form T9 in each particular node to P27 in all other nodes (for simplicity reasons Figure 5
shows just broadcasting from the first node to other nodes).

Figure 6: Simulated offered traffic

Characteristic in Fig.6 show that even in the case of a big traffic load network throughput is very closed to
simple saturation without communication bottleneck. This is achieved due to approximation of the channel

T1

 M_Data_Request

P13P12

one node
started to send

channel passive

 M_Data_Request M_Data_Request M_Data_Request M_Data_Request
 s s s s s

P11 P14

channel visibly active more nodes
started to send

T9
T1P27

T1P27
T1P27

T1P27

backlog (higher traffic ⇒ higher backlog ⇒ longer average random delay ⇒ less collisions) without charging
low traffic by long random delay.

Acknowledgement: This work was supported by the Ministry of Education of the Czech Republic under Project
LN00B096.

References
[1] Blum, I., Juanole, G.: Formal Specification and Analysis of a Control System Based on Computer
Networks, WFCS’97 – IEEE workshop on Factory Communication Systems, October 1-3, 1997, Grafismar
Barcelona
[2] Hilmer, H., Kochs, H.D., Dittmar, E.: A Fault Tolerant Communication Architecture for Real-time
Control Systems, WFCS’97 – IEEE workshop on Factory Communication Systems, October 1-3, 1997,
Grafismar Barcelona
[3] Tovar E., Vasques F., Guaranteeing Real-Time Message Deadlines in Profibus Networks, 10th
Euromicro Workshop on R-T Systems, 1998, Berlin
[4] ECHELON CORPORATION, Document No.19550, „LonTalk Protocol Specification” -Version3.0.
Palo Alto, 1994.
[5] Tadao Murata: “Petri Nets: Properties, Analysis and Applications” Proceedings of the IEEE, vol. 77,
No. 4, April 1989.
[6] M. Menasche and B. Bartolomieu: „Time Petri nets for analyzing and verifying time dependent
communication protocols”. Proc. Of 3rd Int. Workshop on Protocol Specification, Testing and Verification,
Elsevier Science, 1983, pp. 161-172
[7] Zhen Liu, "Performance Analysis of Stochastic Timed Petri Nets using Linear Programing Approach,
INRIA 1997 ISSN 0249-6399
[8] G. Chiola, A. Ferscha, Distributed Simulation of Petri Nets, University of Torino, Italy, 1993
[9] Enhanced Media Access Control with LonTalk® Protocol, LonWorks® engineering bulletin, January
1995, Part Number 005-0001-01 Rev.C
[10] K. Lautenbach, H.A. Schmid: Use of Petri Nets for Proving Correctness of Concurrent Process
Systems, IFIP 74, North Holland Pub. Co., (1974) 187-191.
[11] J. Martinez, M. Silva: A Simple and Fast Algorithm to Obtain All Invariants of a Generalised Petri Net,
in: C. Girault, W. Reisig (eds): Application and Theory of Petri Nets, Informatik Fachberichte No.52, Springer
(1982), 301-310.
[12] F. Kruckeberg, M. Jaxy: Mathematical Methods for Calculating Invariants in Petri Nets, in: G.
Rozenberg (ed): Advances in Petri Nets, LNCS 266, Springer (1987) 104-131.

Contact address:
Karlovo nám. 13, Czech Technical University in Prague
121 35, Prague 2, Czech Republic
hanzalek@rtime.felk.cvut.cz
http://dce.felk.cvut.cz/hanzalek/
phone: ++420 2 24357434
fax: ++420 2 24357610

