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Petri Nets make it possible to model and visualize behavior comprising concurrency, synchronization and 
resource sharing. They are convenient tools to model parallel algorithms and communication protocols. 
Petri Nets offer profound mathematical background originating namely from linear algebra and graph theory. 
Murata [5] provides a good survey on properties, analysis and applications of Petri Nets.  
Various tools listed on http://www.daimi.au.dk/~petrinet/ perform analysis and simulation of various Petri Net 
classes. Very often they offer convenient graphical environment and sometimes they tend to be too complex. On 
the other hand these tools have very limited possibility of extensions to problems specifically needed for given 
application. Some of them are accessible in source code, but these projects are relatively large and difficult to 
modify.  
Approach adopted in this article is based on the three steps: 
• Petri Net modeling in convenient graphical design tool (e.g. Pmaker) 
• export to matrix representation in Matlab 
• Matlab based Petri Net analysis and visualization of simulation results. 
This approach allows to organize a work in a modular way, to use standard libraries and to build own tools. In 
other words we are no more using a 'universal' tool but we are programming our own tool with support in a 
modeling and visualization stage. This is quite more convenient because no tool is universal enough.  
This article is organized in two principal sections. One is based on Petri Net (PN) structural properties and one 
on Stochastic Timed Petri Net (STPN) token player. Various examples used in laboratory exercises of the subject 
Distributed Control Systems are shown through the text.   
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The structural properties are those that depend on the topological structure of Petri Nets. They are independent of 
the initial marking M0 in the sense that these properties hold for any initial marking or are concerned with the 
existence of certain firing sequences from some initial marking. Thus these properties can often be characterized 
in terms of the incidence matrix C and its associated homogeneous equations or inequalities. 
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Structural properties of Petri Nets are given by linear invariants introduced by Lautenbach [10]. In practice we 
are usually interested in a positive version of linear invariants defined as follows:  
Let a finite PN system with P={P1,P2, ... , Pm} and T={T1,T2, ... ,Tn} be given then a vector f ∈ Zm is called a 
positive P-invariant of the given PN, iff: CT • f = 0  ∧  fi ≥ 0 ∀ i=1,...,m.  
In this article, furthermore, only P-invariants will be considered. To obtain T-invariants, it is needed to transpose 
the matrix C and the use the same method.  
More generally a given invariant f can be written as a composition of invariants called  generators 
In general there are two approaches to find positive P-invariants (Matlab algorithms source code for both 
approaches is available from the author upon request): 
1) Find a basis of a certain type and then construct the generators by varying the basis vectors [12].   
2) Find a set of positive P-invariant generators by combinations of all input and all output places. This algorithm 
was published in [11]. It generalizes in some sense the Jensen's rules, offering a systematic way to finding all 
invariants.  
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Let a finite PN system with P={P1,P2, ... , Pm} and T={T1,T2, ... ,Tn} be given. A place Px is called an implicit 
place iff the two following conditions hold: 
1) any reachable marking M(Px) is equal to a positive linear combination of markings of places from P  
2) M0(Px) does not impose any additional condition to fire its output transitions   
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Figure 1 shows a Petri Net model of two communicating 
computers in deadlock situation. The core of the problem is 
that both computers are ready to receive but none is ready to 
send. 
When analyzing PN from Figure 1 in Matlab we can obtain 
positive P-invariant generators specifying conservative 
components (subnet preserving number of tokens): 
• {P1,P2} 
• {P3,P4} 
• {P3,P5,P2,P6}  
As a consequence the following equations hold for marked PN: 
M(P1) + M(P2) = 1 
M(P3) + M(P4) = 1  
M(P3) + M(P5)+M(P2)+M(P6) = 0  
PN given in Figure 1 is a marked graph, so the third equation 
proofs that the system is not live because this conservative 
component does not contain any token.   
 

Figure 1: Two communicating computers in 
deadlock 
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Consider an example algorithm given by the 
following pseudo-code:  
 
for k=1 to n 
 A(k)=fce(G(k-1)) 
 B(k)=fce(A(k),E(k-1)) 
 C(k)=fce(A(k)) 
 D(k)=fce(D(k-1),C(k)) 
 E(k)=fce(B(k),D(k)) 
 F(k)=fce(C(k)) 
 G(k)=fce(E(k),F(k),C(k)) 
 H(k)=fce(I(k-1)) 
 I(k)=fce(H(k)) 
endfor 
 
The code is represented by the the PN model 
given in Figure 2. Places correspond to the 
data and transitions correspond to the code.  

Figure 
2: Algorithm data dependencies 

 
Markings correspond to the presence of valid data computed by the previous transition or assigned during 
algorithm initialization. The cyclic algorithm can be scheduled to unlimited (but possibly minimal) number of 
processors while analyzing PN from Figure 2 in Matlab:  
• reduce implicit places (e.g. C* in Figure 2) 
• reduce self-loop places (e.g. D* in Figure 2) 
• find positive P-invariant generators 
• find optimal schedule by assigning processors to positive P-invariant generators (number of processors 

correspond to the number of tokens in the positive P-invariant) 
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Figure 3 shows two nodes accessing the media with 
the use of token ring access method. The media 
activity is represented by P9 and by P10 (Bus_Idle 
and Bus_busy). These two places are in fact implicit - 
they do not contribute to the system behavior. This is 
proven by the following reasoning: 
• from positive P-invariant generators  
M(P1)+M(P5)+M(P10) = 1 
M(P1)+M(P3)+M(P5)+M(P7) = 1 
• by substitution the following holds  
M(P10) ≥ M(P3) 
1-M(P1)-M(P5) ≥ 1-M(P1)-M(P5)-M(P7) 
M(P7) ≥ 0 
• in similar way 
M(P10) ≥ M(P7) 
1-M(P1)-M(P5) ≥ 1-M(P1)-M(P3)-M(P5) 
M(P3) ≥ 0 
• as consequence P10 is implicit 
• in similar way P9 is implicit too 
 

Figure 3: Token Ring access method 
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Stochastic Timed Petri nets used in this article contain either zero, timed or stochastic timed transitions with 
uniform distribution. There are two types of non-zero time transition behavior given in literature. The definition 
used in the article, considering that transition does not reserve the tokens in input places, is described e.g. in [6].  
The functionality of the model under consideration is fully specified by the interpretation of the token player 
given in Matlab like syntax by Algorithm 1. 
Algorithm 1: 
[Seq,M] = PlaySTPN(Pre, Post, M0, TimeT, TypeT, ticks) 
%Pre - Matrix of preconditions, Post - Matrix of postconditions, M0 - Vector of initial markings   
%TimeT - Vector of transition time, TypeT - Vector of transitions types (zero / timed / stochastic) 
%ticks  - Number of simulation ticks  
%Seq - Firing sequence, M - Markings at the end of simulation  
 
%1-initialization 
M=M0; 
for j=1:number of transitions 
 CountT(j)=initial counter value  
end 
%Main Cycle 
while t<=ticks  
 %2-generate vectors x-enabled transitions and y-firable transitions 
 for j=1:number of transitions 
      if transition j is enabled  
   then  x(j)=1  
         if CountT(j)=0  then y(j)=1 
          else y(j)=0 
    end 
   else  x(j)=0 
         CountT(j)=initial counter value   
  end 
 end 
 %3-decrement counters or change markings 
 if y=zeros 
  then %decrement counters for enabled transitions in x 
   CountT=CountT-1 



   t=t+1 
  else %change marking by firing one transition 
   f = randomly chosen firable transition in y 
   M = M + Post(:,f) - Pre(:,f) 
   %add fired transisiton to firing sequence 
   Seq=[Seq,f]  
 end 
end 
 
With respect to the Algorithm 1 the following drawbacks should be mentioned: 
In the case of effective conflict, no token reservation is assumed. It means that the first fireable transition 
(enabled & counter=0) wins. When “reservation” behavior is needed, then zero time transition should precede 
timed or stochastic transition.  
In the case of the actual conflict representing the system non-determinism (two and more fireable transitions in 
conflict) the winning transition is chosen in random manner. It means that one possible firing sequence is chosen 
among several ones.   
Initial transition counter CountT(j) is either 0 (in the case of zero-time transition), or TimeT(j) (in the case of 
timed transition) or integer number from interval <1,TimeT(j)> (in the case of the stochastic transition with 
uniform distribution).  
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The STPN model of one node MAC layer using predictive p-persistent CSMA is shown in Figure 4. Zero time 
transitions are not labelled (e.g. T1, T2, T3), timed transitions are labelled by “t” with corresponding time (e.g. 5 
ticks in the case of T4) and stochastic transitions are labelled by “s” with corresponding upper margin of uniform 
distribution interval. Figure 4 consists of the following parts: 
Idle Channel Detection Model is situated on the top of the picture (P3 - P5, T2 - T4). 
Left side of the figure represents the backlog estimator (P17 - P27, T18 – T36).  
Physical layer model is on the right side (P8 – P12, T8 – T11). 
Medium Access Model is on the bottom of the figure (P13 - P16, T12 – T17).  
 

Figure 4: STPN model of predictive p-persistent CSMA 



 
 
The channel backlog (BL) corresponds to mean value of the predicated channel load. All nodes increment the 
estimated backlog by one when receiving request frame (owing to the broadcast capability of the bus topology, a 
particular node is aware of this frame even if it is not destination node) or sending the request frame. The 
estimated channel backlog is decremented by one at the end of each packet cycle (request and response frame). 
Our model assumes that all frames have the same length (10 ticks) and that all packets are acknowledged (T9 – 
request, T10 - response).  
Because of lack of space only 5-level backlog estimator is modelled. Places P17, P18, P19, P20, and P21 represent 
the state of the backlog estimator and correspond to the current value of channel backlog BL. Place P17 
represents BL=1, P18 ~ BL=2, and so on. Message Frame_OK (place P27), indicates a successfully received 
request frame as a broadcast message from the physical layer (from the transition T9 in sending node) and 
transitions T18, T19, T20, T21 increment current value of backlog. Transition T23, T24, T25, and T26 are timed 
transitions with deterministic firing time corresponding to the packet cycle. Via T28, T30, T32, T34, or T36 
predictive p-persistent CSMA generates random time delay from random timing interval, which is dependent on 
the estimated channel backlog. Please notice, that just one of the transitions T28, T30, T32, T34, T36 is fired at a 
given time instant. 

Figure 5: Interconnection of five nodes 

 
Simulated network consisting of five nodes is shown in Figure 5. Broadcast communication of request frame is 
realized by arcs going form T9 in each particular node to P27 in all other nodes (for simplicity reasons Figure 5 
shows just broadcasting from the first node to other nodes). 

 

Figure 6: Simulated offered traffic 

Characteristic in Fig.6 show that even in the case of a big traffic load network throughput is very closed to 
simple saturation without communication bottleneck. This is achieved due to approximation of the channel 
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backlog (higher traffic ⇒ higher backlog ⇒ longer average random delay ⇒ less collisions) without charging 
low traffic by long random delay. 
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