PRELIMINARY ANALYSIS OF LARGE SETS OF PROCESS DATA

Pavel Ettler

COMPUREG Plzeň, s.r.o.

Summary

A decision-support tool for operators of complex industrial processes is being developed in the framework of the long-term international research project. Achievements of the project should help to maintain the best possible production quality under various working conditions. For the project purposes large sets of process data are being gathered which will be used for training and verifying of advanced algorithms based on probabilistic approach.

The contribution deals with preliminary analysis of the data which ought to help to find important relationships among particular signals and to improve understanding of the multi-dimensional problem. Matlab's features such as graphical capability, ability to execute C-coded modules and ActiveX support are being utilized for the task.

1 Introduction

Reliable control system is a must for plants running complex and/or fast industrial processes. Although the well tuned control loops are supposed to ensure flawless production, the final quality of the product still depends on many adjustable parameters and thus on the skills and experience of operators.

The international consortium is attempting to find out correlations between slight quality variations and information hidden in process data. As a result, a decision support tool should be developed to help operators with optimal settings of the process. Academic partners of the project are responsible for theoretical research and development of suitable and powerful algorithms [1] while the application oriented company is committed to implementation [2], [3].

For a pilot application a medium-size cold rolling mill has been selected. For the project purposes a lot of data are being provided for learning and testing of new algorithms. Preliminary analysis of data is a prerequisite.

2 Batch data conversion

Cold rolling on a reversing rolling mill consists in a sequence of passes resulting in reduction of thickness of the metal strip. Data acquisition is triggered synchronously with the strip movement. Every data sample which is available for control is recorded and when a particular pass is finished data are stored in corresponding file having Microsoft Access format.

To allow further processing of data within the Matlab environment a converter from Access to Maltab formats was programmed (Fig. 1). The converter excludes records of sequences which could confuse or devalue further calculations. Because of large volume of data batch processing is used in most cases.

3 Utilization of ActiveX support

For the sake of flexibility an alternative to the batch conversion was sought which would allow to work on data in original format. As a result Matlab's ActiveX support was utilized and a database access control was developed in Visual Basic (Fig. 2). After invoking the control from a Matlab script (or interactively from the command window) it appears in a new figure as shown in Fig. 2. The control utilizes an ordinary common dialog to select an input file. As a result data are transformed into a big CD (\underline{C} oil \underline{D} ata) matrix within the Matlab's workspace. Number of rows corresponds to number of samples

🚰 13/401 .md	b->.m	at	-	
Input directory	F:\MdbData\			
Output directory	F:\MatlabData\			
Num of files	401	Multiple files 🕱	Thickness limit 50	
Proc. files	13			3
Input file		06130737_2.MDB		100
Outputfile		06130737_2.mat		47
Num of channels	44			_ %
Num of samples	17666	N	ext End	
Proc. samples	17505			1

Figure 1: Converter of data files from MS Access to Matlab formats.

while each column contains data from a particular signal channel. Two more columns are created during conversion from encoded logical variables. Auxiliary matrices SignalNames and FileName including signal and original file names respectively are created as well. In the case of selected example the workspace is occupied as follows:

Name	Size	Bytes	Class
CD	53406x46	19653408	double array
FileName	1x51	102	char array
SignalNames	46x19	1748	char array

Grand total is 2457601 elements using 19655258 bytes

📣 Matlab MDB	Access			
Input directory	E:\Pdtool2\Tex\Matlab2000\			
	Database name	e 07211142_2.MDB		
	Num of samp	oles / channels	534667	44
Stop proces:	sing Process	Processed samples / %		31

Figure 2: Matlab's figure as a container for database access ActiveX control

4 Quality criteria

Several criteria are being used to evaluate quality of the product. Three statistical coefficients are used mainly:

1. Statistical coefficient C_p defined as:

$$C_p = \frac{tol_{h_2}^+ + |tol_{h_2}^-|}{6 \sigma_{H_2}} ,$$

where H_2 denotes output thickness of the processed metal strip,

 h_2 is its deviation from the nominal value H_{2nom} ,

 $tol_{h_2}^+, tol_{h_2}^-$ are boundaries of tolerance range of h_2 and

 \bar{H}_2, σ_{H_2} are mean and standard deviation of the output thickness H_2 respectively.

2. Statistical coefficient C_{pk} defined as:

$$C_{pk} = \frac{\min(\bar{h}_2 - tol_{\bar{h}_2}^-, tol_{\bar{h}_2}^+ - \bar{h}_2)}{3 \sigma_{H_2}}$$

where \bar{h}_2 denotes mean of h_2 .

3. Coefficient C_{per} representing the percentage of the output thickness deviation h_2 being within the tolerance range $\langle tol_{h_2}^-, tol_{h_2}^+ \rangle$.

The aim of the quality control is to maximize coefficients C_p , C_{pk} , C_{per} . For each data file quality criteria have had to be evaluated. For selected data sequences propagation of statistical coefficients has been subjected to investigation as well.

5 Multidimensional clusters and histograms

If the time information is allowed to be eliminated each data sample can be projected in the multidimensional data space where mutually orthogonal axes correspond to single signals. Even if the original number of signals has been reduced to 15 it would be inconvenient to cope with raw data clusters of such dimensions. Transformation into a multidimensional grid of relative frequencies can be used instead. Then each grid cell contains relative number of occurrences of data samples in corresponding subspace given by cell boundaries. Such arrangement can serve as a first rough insight in a conception of multidimensional densities of probability of various working conditions of the machine.

For the sake of reduction of the dimensionality problem all possible 2-dimensional projections were evaluated resulting in 2-D histograms. As a result a set of 15 structures each containing 15 2-D arrays was created. Particular arrays were stored as *sparse* matrices to spare memory (Fig. 4). The workspace is then occupied like this:

Name	Size	Bytes	Class		
Ср	1x1	8	double array		
Cper	1x1	8	double array		
Cpk	1x1	8	double array	1 - +1 -	
FileName	1x51	102	char array	ng_ti =	F100 100 J
h2E	1x1	8	double array	n1:	[100x100 sparse]
h2nom	1x1	8	double array	n2:	[IUUXIUU sparse]
h2s	1x1	8	double array	v1:	[100x100 sparse]
hgSN	15x1	1438	cell array	♥2:	[100x100 sparse]
hg I	1x1	61320	struct arrav	ν:	[100x100 sparse]
6- hg I1	1x1	54552	struct array	z:	[100x100 sparse]
8 hg I1e	1x1	48156	struct array	I1:	[100x100 sparse]
hg T2	1 x 1	57120	struct array	12:	[100x100 sparse]
hg T2e	1 x 1	52860	struct array	I:	[100x100 sparse]
hg h1	1 1 1	185304	struct array	I1e:	[100x100 sparse]
hg h?	1 - 1	187200	struct array	I2e:	[100x100 sparse]
hg nz	1 - 1	110940	struct array	pz:	[100x100 sparse]
hg = p2	1 - 1	67894	struct array	t1:	[100x100 sparse]
ng_01	11	72200	struct array	t2:	[100x100 sparse]
ng_tz	1.1	13300	struct array	zs:	[100x100 sparse]
ng_v	1.1	100160	struct array		
ng_vi	111	106166	struct array		
hg_v2	1x1	78888	struct array		
hg_z	1x1	59928	struct array		
hg_zs	1x1	65664	struct array		

Figure 3: Examples of 2-D histogram visualized as pseudocolor and contourf plots

6 C-coding

Matlab scripts were made to allow automated calculation of

- quality criteria, means, standard deviations and extremes of signals;
- multidimensional grid of relative frequencies distributed into complex structures.

Figure 4: Example of visualization of sparsity pattern

Because many hundreds of files have been waiting for processing the main algorithms were coded in C language and used as mex-functions to speed up calculations. Microsoft compiler and linker were used.

7 Conclusions

Large sets of process data are being analyzed and statistically pre-processed within the Matlab environment. Results will be utilized both for better understanding of the process and for training and verifying of new algorithms which are being developed by other members of an international consortium. Achievements of the project should lead to implementation of the decision-support tool for operators of fast and complex processes such as metal rolling.

8 Acknowledgements

This work has been supported by the grant IST-1999-12058 ProDaCTool of the EC.

References

- M. Kárný, I. Nagy, and J. Novovičová: Quasi-bayes approach to multi-model fault detection and isolation. Accepted for publication in: International Journal of Adaptive Control and Signal Processing, 2000.
- [2] P. Ettler, F. Jirkovský: Digital controllers for ŠKODA rolling mills. In: Advanced Methods in Adaptive Control for Industrial Applications, Ed.: Lecture Notes in Control and Information Sciences – 158, Springer – Verlag, 1991.
- [3] P. Ettler, M. Valečková, M. Kárný, I. Puchr: Towards a Knowledge-Based Control of a Complex Industrial Process. In: Proceedings of the 2000 American Control Conference, Chicago, USA, June 2000.

Pavel Ettler COMPUREG Plzeň, s.r.o. Nádražní 18 / P.O.Box 334 306 34 Plzeň Czech Republic e-mail: ettler@compureg.cz