

2021-09-09

NMPC FRAMEWORK FOR AUTOMOTIVE

Daniel Youssef

Agenda

Garrett Motion Introduction

Model Predictive Control Introduction

NMPC Framework

Use Cases

Summary

Q&A

COMPANY INTRODUCTION

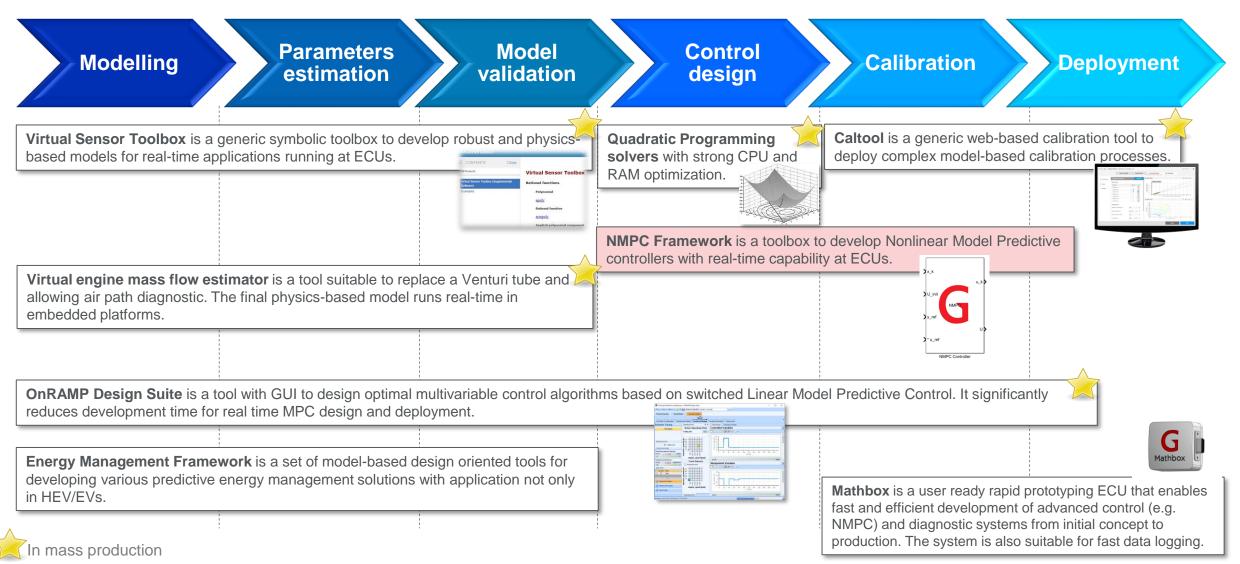
Garrett technology growth strategy

CORE TURBO	 Continuous differentiated innovation 60+ years of technology leadership and product innovation Highly-engineered products deeply integrated with customers Broadest portfolio across vehicle segments 				
ELECTRIFICATION & SOFTWARE		eneration of technology leadership Extending strong turbo foundation into electric boosting Expanding portfolio for electrified vehicles Differentiated software solutions for connected vehicles			
PIPELINE		 Advanced technology for new unmet customer needs Novel solutions for electrified, connected and autonomous vehicles Building on our strong customer intimacy and collaboration 			

Focus on advanced technology for difficult industry challenges

Garrett Connected Vehicle Software

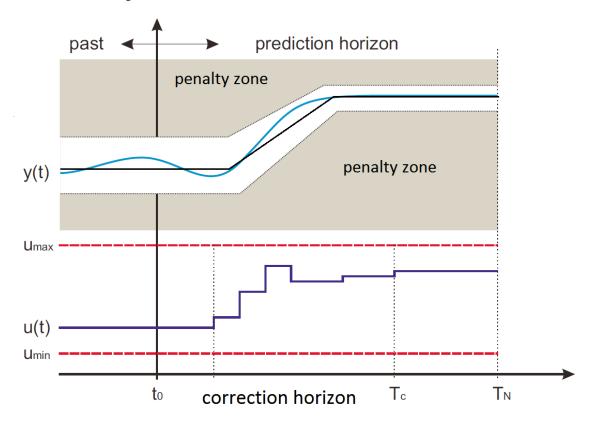
Unsolved Challenges Structural Complexity New Garrett Solutions Internal Combustion Engine Optimize complex systems **Advanced Control** aftertreatment + E-boosting + . . . 25+ patents • MPC in production Algorithms & Health Indicators Boost Ctrl SOP 2021 - industrial process controls Validate for real-world **Electrified Powertrain** hybridization + battery SOC/SOH + . . . **Ensure** in-use compliance **IVHM*** • 25+ patents Fault Modeling, Diagnostic JA6268 author **Reasoning & Prognostics** • SOP 2020 aircraft health management **Detect** health degradation Autonomy sensors + actuations + . . . **Diagnose** accurately **Cyber Security** Tier1 integrated • 40+ proprietary algorithms Intrusion Detection & Diagnostic • SOP 2021 - industrial security management Connected Differentiate fault vs. hack threat surfaces + updates + . . .


*integrated vehicle health management

New Challenges Require New Technologies for Control, Health and Security Management Intel | Copyrights @ 2021 Garrett Motion Inc.

Garrett Advanced Control Products

MODEL PREDICTIVE CONTROL INTRODUCTION



What is Model Predictive Control?

Model Predictive Control is a technology that optimizes performance of systems with many actuators, sensors and objectives in order to get the best possible performance of the controlled system.

Technology for Electrified, Connected and Autonomous Driving


What is Model Predictive Control (MPC)?

Multiple performance objectives – fuel economy, emission, driveability		MATCH	Multi-objective optimization-based technology	
	Complex systems with many actuators, sensors and constraints	MATCH	Designed to control and optimize multivariable constrained systems	Garrett Model Predictive Control
	Connectivity is becoming a standard	MATCH	"Preview information" is embedded in the core	Leading MPC Solution for Automotive Applications
Calibration effort for emerging technologies – to be fast on the market		MATCH	Model-based approach with level of automation	high

Garrett -> University Level Knowledge with Quality and Speed of Auto Industry

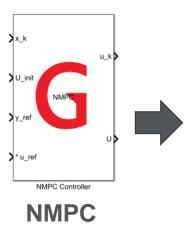
NMPC FRAMEWORK

Nonlinear MPC Framework - Introduction

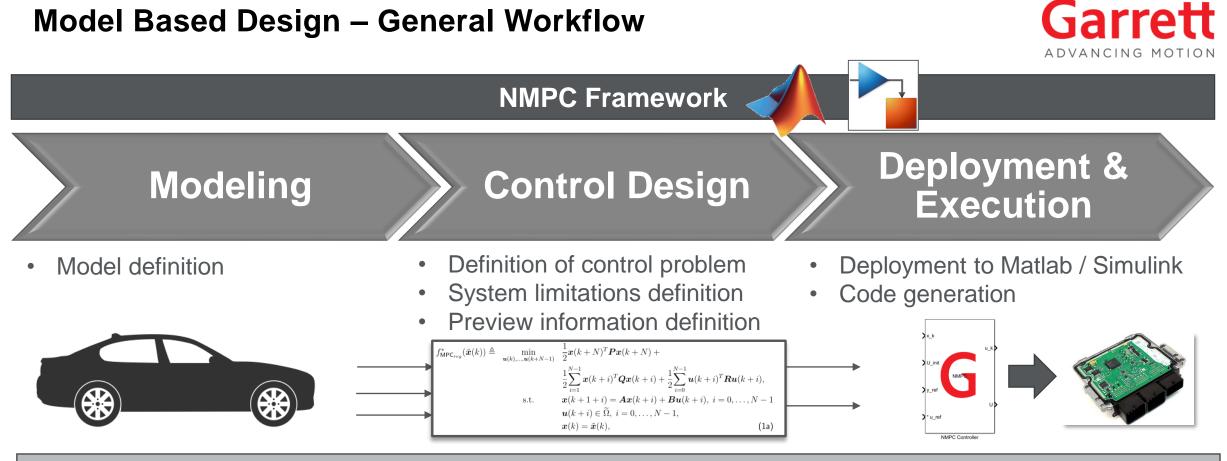
Problem Statement

- Nonlinear dynamic system to be optimized
- Known / estimated preview information utilization (references, limits, disturbances, ...)
- Model parameters variability (ageing)
- CPU / Memory Limitations (~200MHz @128kB RAM)

Benefits

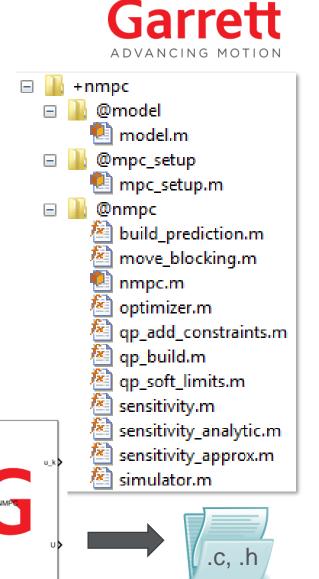

- Reaching full potential of the system optimization
- Reduction of calibration time and code complexity
 - Systematic preference and model-based calibration
 - Systematic handling of preview information
 - Systematic handing of system limits
- Unified multi-domain approach

Solution


- Full **Nonlinear** Model Predictive Controller
 - Time-varying preview of references, limits, disturbances, ...

Highly efficient real-time optimizer + memory optimization

Benefits of NMPC Framework

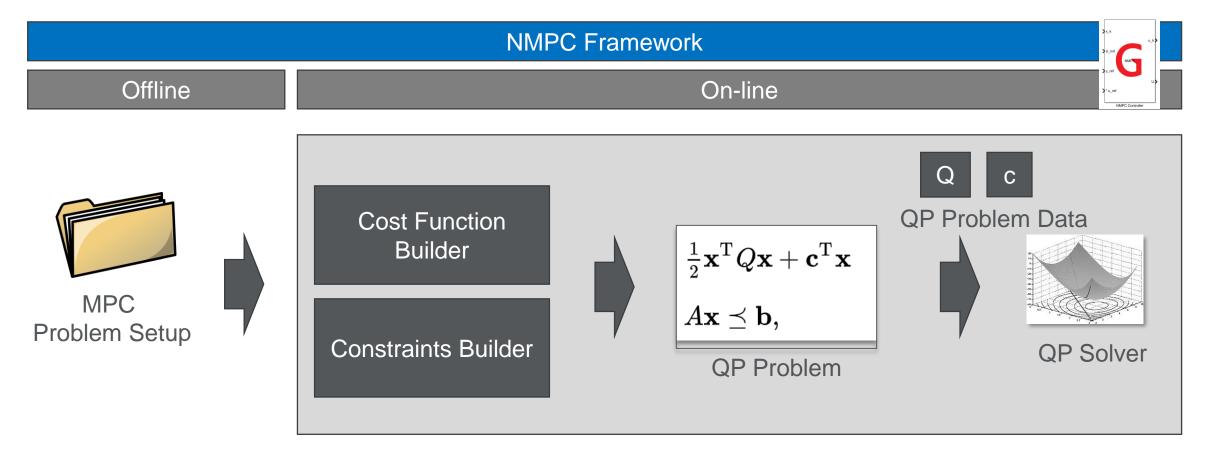

- System interaction / limitation
- MIL/SIL validation enabler

- Preference-based calibration (systematic)
- Flexibility while still systematic (math is behind the scene)
- Model-based Design
 - Maintenance cost reduction
 - Code reuse optimization
- CPU/Memory Optimal Solver

NMPC Utilizes Model and Preview to Provide System Optimization

Nonlinear Model Predictive Control Framework - Overview

- Matlab / Simulink based Object Oriented Toolbox
- Continuous / Discrete-time models support
 - Internal / external parameters
- Straightforward formulation of MPC control problem
 - Definition of model and sensitivities (anonymous, external functions)
 - Defining the control goals (tracking for actuators and output references, actuator increment and value, output limits, ratio difference, ratio tracking), linear + quadratic norms
 - Hard and soft constraints
- Others
 - Support of preview information
 - Systematic controller design and system performance evaluation in simulation
 - Support of multiple QP solvers for best performance and memory footprint
 - Can be exported to Simulink and code generated from it
 - Single precision floating point logic


X_k

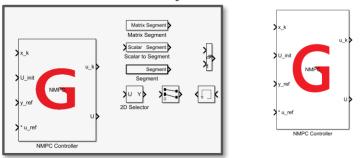
X*u ref

NMPC Controlle

Model Predictive Control - Typical Workflow

NMPC Framework – High Level Overview

Definition of model functions Dynamics, outputs and Jacobians Support of numerical Jacobians


Oliciteencent engen demonstration durate, control numel. - C
 X

Cost function definition Linearization type (LTI/LTV) Preview information settings (S)QP solver settings

External model parameters External cost function weights Export of model / input predictions Interpreted / Code generation targets

Simulink Library

USE CASES

Use Case – Predictive Cruise Control Example – How To

Longitudinal Vehicle dynamics*

 $\frac{dv}{dt} = \alpha_1 T + \alpha_2 v^2 + \alpha_3 \phi + \alpha_4$ *SAE 2016-01-0155

Modeling

>>nx = 1; m = 1, p = 1; model = nmpc.model(nx, m, p,0); >>model.f = @(x,u,r) [u(1), x^2, u(2), 1]*alpha; % Acceleration [ms^(-2)] >>model.dfdx = @(x,u,r) 2*x*alpha(2); % Derivatives of f w.r.t. x >>model.dfdu = @(x,u,r) [alpha(1), alpha(3)]; % Derivatives of f w.r.t. u >>model.g = @(x,u,r) x; % Velocity [ms^(-1)] >>model.dgdx = @(x,u,r) 1; % Derivatives of g w.r.t. x >>model.dgdu = @(x,u,r) [0, 0]; % Derivatives of g w.r.t. u >>model.mv = 1; % Engine torque [Nm] >>model.dv = 2; % Road grade [%] >>model.Ts = 0.1; % Sampling period

Controller Design

>>mpc = nmpc.mpc_setup(); % create instance of NMPC

Prediction Horizon Settings

>>mpc.np = 50; % Prediction horizon - number of steps into future

Constraints

>>mpc.u_lb = 0 * ones(1,mpc.np); % limitation of inputs
>>mpc.u_ub = 400 * ones(1,mpc.np); % limitation of inputs

Cost function

>>mpc.R_du = 0.005 * ones(1,mpc.np); % drivability
>>mpc.y_tr = [1]; % Index of output - vehicle speed
>>mpc.Q_r = 500 * ones(1,mpc.np); % tracking of vehicle speed ref.
>>mpc.preview = 1; % Use reference preview

Execution

>> my_nmpc = nmpc.nmpc(model,mpc); % Setup object for run

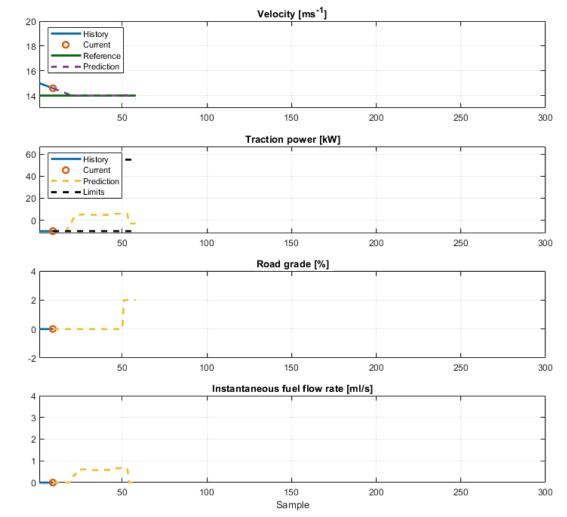
>> [U,y_pred,~] = my_nmpc.control(x0,U,YREF,[],u_lb,u_ub, y_min,y_max);

Deployment to Simulink

my_nmpc.control.deploy_system('pcc'); % Deploy to Simulink for codegen

Use Case – Predictive Cruise Control for Hybrid Vehicle

Predictive Cruise Control (PCC)


• Find optimal traction power to propel vehicle at the **reference velocity** while respecting driver's comfort, speed limits, minimum/maximum power, and safe distance from the lead vehicle

Objective

- Utilize horizon preview
 - Road grade, road curvature, speed limits
- Smooth changes of traction power request
- Best fuel economy

Problem formulation

- Defined in power/energy domain
- Scalable to any vehicle configuration
- Up to **11%** Fuel Economy Benefit demonstrated in vehicle*

* SAE 2017-01-0090

NMPC Framework vs. Other Solutions

PCC (SAE 2016-01-0155) with preview with N = 40 , Ts = 500ms

	NMPC Framework Garrett ADVANCING MOTION	MPC Toolbox (LTV)	MPC Toolbox + External Solver + 3rd Party Solver	External Solver 3 rd Party Solver
CPU*	1.1 ms	-	14.7 ms (~ 14X)	6.2 ms (~ <mark>6</mark> X)
RAM	4.4 kB (0.5 kB stack)	136 kB (+10kB stack) (~30 X)	92 kB (+1 kB stack) (~20x)	131 kB (+1 kB stack) (~30X)
Logic	single	single	double	double
Cost function	Wide range of practical cost function terms	Limited	Limited	Generic
Feedthrough Support	yes	no	no	yes
Blocking	Different for each actuator	Fixed, Interpolated	Fixed, Interpolated * facto	Not directly r of 25 used for compute the PC->ECU time

19

Summary

Garrett's NMPC Framework

- Matlab / Simulink based Toolbox
- Easy-to-use practical tool for design and deployment of NMPC for Automotive
 - ▶ Low CPU time
 - Low memory footprint

Next Steps

- Adding of GUI and Extended Kalman filter functionality
- RAM memory optimization
- Interface for Matlab MPC Toolbox?

Contact Details: Daniel Youssef, Daniel.Youssef@garrettmotion.com

