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Abstract

The Load Dispatch (LD) is one of the essential problems in the power grids.
The LD problem consists in scheduling of the output power of particular gen-
erators in time to cover the overall power demand while minimizing the overall
generation costs, eventually addressing also other (e.g. ecological) objectives.
The LD problem is generally non-convex, especially when involving the valve-
point effect. This non-convexity challenges analytical and heuristic methods in
finding optimal solution in reasonable time. Differential Evolution (DE) is one
of evolutionary algorithms, which has been used in many optimization problems
due to its simplicity and efficiency. This paper presents LD solution considering
valve loading effect via the Modified Differential Evolution (MDE) algorithm.
The MDE is inspired from DE and has new mapping function thus represents
a new efficient stochastic search technique. The proposed MDE is examined on
the LD test system and compared with other LD solution methods.

Table 1: Nomenclature

Symbol Interpretation

N number of generators in the system
M number of hours in the time horizon
Pi,t the output power generation of generator i in time t
ai, bi, ci fuel function parameters of generator i
ei, fi valve-point effect parameters of generator i
PDt the total power system demand in time t
PLt the total system transmission losses in time t
Pmin
i the minimum limit on output power generation of generator i

Pmax
i the maximum limit on output power generation of generator i

URi the ramp-up rate limits of the ith generator
DRi the ramp-down rate limits of the ith generator
B the N ×N matrix of loss coefficients
x,p vectors representing individuals
rand() the generatation of a random number in the range [0,1]
rand(j) the jth valuation of function rand() function
round(·) function that rounds its argument to the nearest integer value
s the counter of iteration of MDE
smax the maximum iteration of MDE
f(·) fitness function of MDE
Np number of individuals in each population of MDE
c1, c2, k1, k2 constants for MDE



1 Introduction

The power industry faces the challenge of adapting to circumstances where the optimal use of
resources is crucial because of rapidly decrease of reserves of fossil fuels and high volatility of
renewable resources [9]. Load Dispatch (LD) is defined as the process of allocating generation
levels to the generating units in the mix, so that the system load is supplied entirely and
most economically [4]. Several classical optimization techniques, such as linear programming
[11], quadratic programming [6], non-linear programming [10], dynamic programming [3] were
proposed to solve LD problem.

This paper is organized as follows. Section 2 provides LD problem formulation considering valve-
point effect. In Section 3, the MDE algorithm is described and its subroutines are discussed in
detail. Obtained results from the MDE to solve the non-convex LD problem are presented in
Section 4. Besides, the MDE is compared with some of the most recently published LD solution
methods. Section 5 concludes the paper.

2 Problem Formulation

The formulation of the LD problem [13] scheduled over a period of time consists in the mini-
mization of total fuel costs, subject to the real power balanced with the total load demand, as
well as the limits on generators outputs, i.e.:

F =

M∑
t=1

N∑
i=1

Fi,t(Pi,t) (1)

with the fuel cost functions of the generation units with valve-point loading represented as:

Fi,t(Pi,t) = ai + biPi,t + ciP
2
i,t + |ei sin(fi(Pmin

i − Pi,t))| (2)

where ai, bi, ci, ei, fi are given parameters.

It is subjected to

• real power balance
N∑
i=1

Pi,t = PDt + PLt (3)

• real power operation limits

Pmin
i ≤ Pi ≤ Pmax

i i = 1, . . . , N (4)

• generating unit ramp rate limits1

Pi,t − Pi,(t−1) ≤ URi i = 1, . . . , N, t = 1, . . . ,M

Pi,(t−1) − Pi,t ≤ DRi i = 1, . . . , N, t = 1, . . . ,M
(5)

where the total system transmission losses PLt in time t are approximated as:

PLt =
N∑
i=1

N∑
j=1

Pi,tBi,jPj,t (6)

where Bi,j represents the element at ith row and jth column of the matrix of loss coefficients B.

1Particularly for t = 1, ∀i ∈ N̂ : Pi,(t−1) =⇒ Pi,0 = Pi,M . It guarantees the periodic application of scheduling.
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Figure 1: Valve-point effect

Probably the most complete definition for the valve-point effect phenomenon [1] can be: ”the
ripples in the input-output curve in the thin line express the result of the sharp increase in losses
due to wire drawing effects which occur as each steam admission valve starts to open”. The
sinusoidal term added to the fuel cost function introduces ripples to heat-rate curve. In Figure 1,
the addition of the valve-point effect increases the non-linearity of the search space as well as
the number of local minima. Furthermore, the application of the absoute value in Equation (2)
makes the objective function generally non-differentiable.

3 Modified Differential Evolution

The Modified Differential Evolution (MDE) [2] is a heuristic algorithm based on Genetic Algo-
rithm (GA) [7] and has new mutation operation and selection mechanism inspired from Particle
Swarm Optimization (PSO) [5] and Simulated Annealing (SA) [8]. We extend the basic version
by introducing Mapping Function (MF) for constraints handling which satisfies all constraints
within whole evolution in contrast to the original version. In this paper, an individual is rep-
resented by vector with n elements x = (x1, x2, . . . , xn)

T or p = (p1, p2, . . . , pn)
T, where the x

notation is used for general optimization operations, while the p notation is used for domain
specific operations. However, both are used for elements of the same population.

In this section, at first, we present the whole MDE algorithm. Consequently its parts are
described in more detail. Namely, Mutation operator, Crossover operation, and Selection mech-
anism are presented, so the original version of MDE is recapitulated. Finally the novel mapping
function is provided.

3.1 The MDE Algorithm

At first, the parameters are set. Then the initialization of population is executed. To create
new population, mutation operator, crossover operator and selection mechanism, respectively,
are applied. After applying, a new mapping function must be used because of constraints
handling. If the stopping criterion is not satisfied go to produce new population by evolutionary
operators, else return the individual with the best fitness as the solution. Here, the maximum
number of iterations is selected as the stopping criterion. The MDE algorithm [2] is described
in Algorithm 1:



Algorithm 1 MDE algorithm

set size of population (Np), the maximum iteration (smax), constants (c1, c2, k1, k2, k0, α)
set initial value of the temperature (T );
initializationOfPopulation();
for s = 1 → smax do ◃ loop for MDE iterations

set the mutation factor β = c1 − c2 ∗ s/smax;
set the crossover rate CR = k1 − k2 ∗ s/smax;
set k = k0 − round((k0 − 1) ∗ s/smax);
T = α ∗ T ;
for i = 1 → Np do ◃ loop for updating the whole population by evolutionary operators

xParent = getIndividual(i);
xRandom = getRandomIndividual();
kBestIndividuals = getKBestIndividuals(k);
uTrial = mutation(kBestIndividuals, xRandom, k, β);
xOffspring = crossover(uTrial, xParent, CR);
xResult = selection(xParent, xOffspring, T );
setIndividual(i, xResult);

end for
for i = 1 → Np do ◃ loop for ensuring the constraints

x = getIndividual(i);
x = mappingFunction(x);
setIndividual(i, x);

end for
end for
BestIndividual = getBestIndividual();
Costs = getCosts(BestIndividual);

3.2 Mutation operator

The mutation operator produces a trial vector for each individual of the current population.
This trial vector will then be used by the crossover operator to produce offspring.

In the original DE [12], there is no criterion for selecting the individuals to apply the mutation
operator. The individuals are changed in this mutation to increase the diversity of population
without any assurance that these changes result in better offspring. To overcome this deficiency,
the mutation operation [2] uses the information of k best individuals. In this operation, the best
individuals of current population are selected based on their fitness values and used for mutation
as follows:

ui(s) = xi,1(s) + β

(
k∑

j=1

( 1
f(xj,b(s))∑k

m=1

1
f(xm,b(s))

)
xj,b(s)− xi,3G(s)

)
(7)

where xj,b(s), j = 1, . . . , k and xm,b(s), m = 1, . . . , k are k best individuals owning the highest
fitness values in the current population. Since f(·) is the objective function of a minimization
problem, one can mention that 1

f(xj,b(s))
is a measure of the fitness of xj,b(s). Hence it can be

applied on calculation of a normalized weight for xj,b(s) (summation of these normalized weights
is equal to one).

Vector xi,1(s) is randomly selected individual from current population for the parent xi(s). β
is the scaling factor, controlling the amplification of the differential variation. Theoretically
β ∈ (0,∞), but it is usually taken from the range [0.1, 1].

Also, to enhance the diversity of the search process, xi,3G(s), inspired from GA, is the result
of variable weight arithmetic crossover between randomly selected parents xi,31(s) and xi,32(s)



from current population:

xi,3G(s) = (1− ωa)xi,31(s) + ωaxi,32(s) (8)

where the variable weight ωa is randomly chosen in the range of [0,1].

The motivation for using the proposed mutation is as follows. The information content of the
best individuals is used to guide the search process of the MDE in contrast to DE which only
relies on the randomly selected individuals. The initial idea of the mutation has been taken
from PSO where the direction vectors from each particle to the best one are used to modify
the position of each particular particle. However, in the mutation a combination of the k best
individuals is used instead of the best one (each of the k individuals contribute to the combination
based on its fitness value). In this way, it is avoided that individuals move toward one individual
that reduces the diversity of population and causes the convergence of the algorithm to a local
minimum. The parameter k depends on the dimension of individuals and size of population.
Large values of k may cause that poor individuals are involved in the mutation operation and
decelerates the convergence speed. On the other hand, small values of k could lead to premature
termination and trapping in a local minimum like the problem of k = 1. To enhance exploitation
of the mutation operator, the parameter k is adaptively changed along the evolution process. In
other words, the MDE begins with a large value of k and then it is linearly decreased along the
iterations:

k(s) = k0 − round
(
(k0 − 1)

s

smax

)
(9)

where k0 is the initial value of k.

3.3 Crossover operation

The crossover operator in the MDE [2], it has identical figure as in DE. The MDE crossover
operator implements a discrete recombination of the trial vector ui(s) and the parent vector
xi(s) to produce offspring x′

i(s). The crossover is implemented as follows:

x′i,j(s) =

{
ui,j(s) if rand(j) ≤ CR
xi,j(s) otherwise

(10)

where xi,j(s) refers to the jth element of the vector xi(s). Elements ui,j(s) and x′i,j(s) are
similarly defined. CR is the crossover rate in the range [0,1].

3.4 Selection mechanism

In the MDE, a probabilistic selection mechanism [2] is used instead of the deterministic selection
of the original DE. The selection mechanism has been inspired from Simulated Annealing (SA).
SA uses a random search strategy, which not only accepts new solutions that decrease the objec-
tive function value (assuming a minimization problem), but may also accept new solutions that
rather increase the objective function value based on a predetermined probability distribution
function. Exponential probability distribution function is usually used for this purpose. Based
on this idea, the selection mechanism of the MDE can be described as follows:

xi(s+ 1) =


x′
i(s) if f(x′

i(s)) ≤ f(xi(s))
x′
i(s) if f(x′

i(s)) > f(xi(s)) ∧ h(xi(s),x
′
i(s)) > rand()

xi(s) otherwise
(11)

h(xi(s),x
′
i(s)) = exp

(
f(xi(s))− f(x′

i(s))

f(xi(s))T

)
(12)



where T is temperature like that defined in SA technique. Here, the temperature T is adaptively
changed in the evolution process as follows:

T (s+ 1) = αT (s)

T (0) = T0
(13)

The parameter α is the rate of reducing the temperature (α < 1). T0 is the initial temperature.
Normalized difference between the parent and offspring objective functions has been considered
in (11) to eliminate the effect of different ranges of objective functions (the adjustment of
the temperature T becomes independent from the range of objective function). The selection
mechanism begins with a large value for the initial temperature. In other words, at the beginning
of the evolution process, many new worse solutions xj(s) have chance to be selected to increase
the exploration of the MDE. However, by evolving the individuals, the temperature T decreases
along the iterations and so the probability of selecting the worse solutions is decreased.

3.5 The scaling factor and recombination rate

The scaling factor β and recombination rate CR affect the exploration and exploitation of
algorithm [2]. Exploration is the algorithm ability to cover and explore different areas in the
feasible search space while exploitation is the ability to concentrate only on promising areas in
the search space and to enhance the quality of the potential solution in the promising region.
The scaling factor β controls the amplification of the differential variations. The smaller the
value of β, the smaller the mutation step sizes, and the longer it will be for the algorithm to
converge. Larger values for β facilitate exploration, but may cause the algorithm to overshoot
good optima. The value of β should be small enough to allow differentials to explore tight
valleys, and large enough to maintain diversity. As the population size increases, the scaling
factor should be decreased. In this paper, an adaptive scaling factor is adopted to have a good
compromise between exploration and exploitation. For increasing exploration, initial β is chosen
large. Then, it is reduced linearly along the iterations for good exploitation:

β(s) = c1 − c2
s

smax
(14)

In this way the mutation operator performs a wider search in the solution space at the early
stages of the evolution, and at the later stages the search is restricted around the local area of
mature individuals, resembling a hill-climbing operator.

The probability of recombination, CR, has a direct influence on the diversity of MDE. The
higher the probability of recombination, the more variation is introduced in the new population,
thereby increasing diversity and exploration. Increasing CR often results in faster convergence,
while decreasing CR increases search robustness. In this paper, an adaptive CR is similarly
adopted. CR is changed along the evolution process like β as follows:

CR(s) = k1 − k2
s

smax
(15)

3.6 Mapping function

3.6.1 Mapping function in original MDE

A key factor in the application of optimization methods is how the algorithm handles the con-
straints related to the problem. The MF maps unfeasible solution to a feasible one that satisfies
the equality constraint. Suppose that the candidate solution p = (P1, P2, . . . , Pn)

T violates the
equality constraint (3). The proposed MF maps each component Pi of p as follows:

Pmapped
i = Pi

PD + PL∑n
j=1 Pj

, 1 ≤ i ≤ n (16)



where pmapped = (Pmapped
1 , Pmapped

2 , . . . , Pmapped
n )T indicates the mapped feasible solution cor-

responding to the candidate solution p. After applying this MF, all candidate solutions will
satisfy the equality constraint (3).

On the other hand after applying this MF, some mapped generations Pmapped
i , i ∈ n̂ may de-

viate from the inequality limits (4) and (5). These mapped generations should be cut to their
associated limits. By combining (4) and (5), ramp rate constrained operation limits of units can
be represented as follows:

Pmin,r
i ≤ Pi ≤ Pmax,r

i i = 1, . . . , n (17)

where
Pmin,r
i = max(Pmin

i , Pi,(t−1) −DRi) (18)

Pmax,r
i = min(Pmax

i , Pi,(t−1) + URi) (19)

To satisfy the constraints of (17), whenever generation of each generator exceeds from its ramp
rate constrained operation limits, the amount of generation is cut to the associated limit. In
other words, we have:

Pi =


Pmin,r
i if Pi < Pmin,r

i

Pi if Pmin,r
i ≤ Pi ≤ Pmax,r

i

Pmax,r
i if Pi > Pmax,r

i

(20)

3.6.2 Proposed changes in the mapping function

In this paper, however, we propose a novel approach how to deal with these constraints. By
applying origin MF, some slight violation from the equality constraint (3) may still be appeared.
This insufficiency is removed by iterative applying of the equation (16) and equation (20) until
the satisfactory accuracy of the satisfaction of the equality constraint (3) is reached. This
modification is introduced by us and does not enlarge the execution time.

In addition to constraints handling, it is necessary to apply MF on each individual in the
population within whole evolution. At the beginning of evolution, the application of the MF
merely on initialization of the population is not enough. Namely during the evolution process,
strong violation of all constraints occurs without application of the MF. We have removed this
drawback in this paragraph unlike [2].

4 Numerical Results

The MDE algorithm has been implemented in Matlab 7 (R2010a, 64-bit) computing environment
on a personal cumputer Intel(R) Core(TM)2 i5-2430M CPU 2,40 GHz and 6 GB RAM memory.

4.1 Test Case Formulation

In this section, the Test Case of Load Dispatch Problem is introduced and investigated. It solves
the LD problem for twenty four hours with different load demand in each hour. The changing
load demand throughout a twenty four hour period reflects realistic situations that the control
engineers in power plants usually encounter. The Test Case is taken from [1].

In Figure 2, the network is consists of five power generation units and the data, transmission
loss formula coefficients and load demand for twenty four hours are listed in tables 2 and 3,
respectively, whereas the transmission loss formula coefficients are in matrix B.
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Figure 2: Network is represented as Directed Graph
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Coefficient
Generator Generator Generator Generator Generator

1 2 3 4 5

ai [$/h] 25 60 100 120 40

bi [$/MWh] 2.0 1.8 2.1 2.0 1.8

ci [$/(MW)2h] 0.0080 0.0030 0.0012 0.0010 0.0015

ei [$/h] 100 140 160 180 200

fi [1/MW] 0.042 0.040 0.038 0.037 0.035

Pmin
i [MW] 10 20 30 40 50

Pmax
i [MW] 75 125 175 250 300

UR [MW]2 30 30 40 50 50

DR [MW]3 30 30 40 50 50

Table 2: Coefficients for Network with 5 generators

Time Load Time Load Time Load Time Load
[h] [MW] [h] [MW] [h] [MW] [h] [MW]

1 410 7 626 13 704 19 654

2 435 8 654 14 690 20 704

3 475 9 690 15 654 21 680

4 530 10 704 16 580 22 605

5 558 11 720 17 558 23 527

6 608 12 740 18 608 24 463

Table 3: Load Demand for 24 hours

2The original unit is [MW/h] in source [1].
3The original unit is [MW/h] in source [1].



The parameters of the MDE are chosen on the basis of [2]. Though, the reference shows the
low sensitivity of the MDE with respect to its adjustable parameters, which indicates another
aspect of the robustness of the MDE. To execute MDE, no wide experience with heuristics of
an executor is required. The parameters of the MDE to solve the Load Dispatch problem are:

Parameter Np smax c1 c2 k1 k2 k0 T0 α

Value 50 500 0.6 0.4 0.3 0.1 5 1 0.7

Table 4: Table with parameters for MDE

4.2 Test Case Results

The MDE runs ten times and the best solution is the solution with the lowest fitness at the end of
Evolution Process. Figure 3 represents the Evolution Process proposed MDE of the best solution.
At the beginning of the Evolution Process, the figure shows the fast convergence behavior of the
proposed MDE. Nevertheless, there are several ”teeth” in evolution of costs, which are caused
by selection mechanism, based on the simulate annealing. It sometimes selects individuals with
worse fitness. They have chance to show their potential to produce next population. Due to
modification of selection mechanism, this feature weakens at the end of the Evolution Process.
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Figure 3: The Evolution Process of the best solution produced by MDE

Numerical results are in following tables. In Table 5, details of the Costs of each Evolution
Process are listed. At first step, the table shows initialization and then the value of costs (the
best solution in given population in given iteration) after fifty iterations for each Evolution. The
best Evolution is the tenth Evolution with the lowest value of costs at the end of Evolution.
In Table 6, the scheduling of power production of generators for 24 hours of the best solution
produced by MDE is stated. This scheduling is related to the best solution at the end of tenth
Evolution. Because of better visualization, in Figure 4, the solution is displayed in bar graph.
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Hour
Generator 1 Generator 2 Generator 3 Generator 4 Generator 5

[MW] [MW] [MW] [MW] [MW]

1 10.68 38.66 60.59 141.27 162.45

2 11.64 43.66 61.52 136.56 185.75

3 14.53 55.18 85.48 139.74 184.88

4 40.21 74.62 87.56 148.92 184.64

5 39.75 74.23 82.03 180.47 188.18

6 13.09 86.11 103.52 180.38 232.88

7 40.16 90.86 98.78 194.17 210.41

8 35.61 87.76 118.67 190.10 230.94

9 21.22 98.89 131.67 214.72 233.69

10 31.28 100.64 134.50 195.04 253.09

11 30.73 104.71 137.05 192.84 265.73

12 27.22 102.11 156.65 196.45 269.18

13 24.45 89.03 154.57 188.11 258.32

14 38.22 84.61 146.34 176.08 254.78

15 27.57 89.28 124.35 172.68 249.23

16 34.19 67.76 107.61 159.46 218.09

17 29.22 66.21 92.74 168.48 208.00

18 24.30 79.65 104.98 203.01 203.99

19 32.39 78.22 127.47 204.28 220.69

20 28.27 90.83 147.97 189.98 257.44

21 36.04 92.27 129.65 184.41 247.44

22 33.09 83.52 96.87 193.85 205.52

23 21.85 73.48 67.84 163.65 206.25

24 12.01 58.03 92.76 143.74 160.99

Table 6: Power production of generators for 24 hours of the best solution produced by MDE
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Figure 4: Power production of generators for 24 hours of the best solution produced by MDE
in bar graph

4.3 Comparison of Results with other LD solution methods

In Table 7, the improved MDE is compared with the original MDE and some of the most recently
published LD solution methods, namely Pattern Search (PS) method [1], Simulated Annealing
(SA) and Matlab function fmincon [14]. Results produced by PS and SA are taken from [1],
where the scheduling of power production is stated as well and is less importing for us in this
place. Function fmincon is based on gradient optimization hence have problems with execution



in some points of continuous space because of the absence of derivative. On the basis of Table
7, the improved MDE produces solution on the same Fuel Cost level as the original one and in
addition, it satisfies the equality constraint (3). In the original MDE, some slight violation from
the equality constraint (3) may be appeared for the solution. Moreover, the improved MDE
produced solution with lower costs about 8% against function fmincon and even about 16%
against PS method and about 17% against SA method.

Test Case Improved MDE Ori. MDE4 Ori. MDE5 PS SA fmincon

Fuel Cost [$/day] 40262 40293 40263 47911 48621 43672

Run Time [s] 119.4 82.9 119.7 514.3 — 78.8

Table 7: Comparison of Results

5 Conclusion

In this paper a hybrid stochastic search technique named Modified Differential Evolution (MDE)
is applied to solve the non-convex LD problem. MDE is in the framework of DE owning a
mutation operator inspired from PSO and GA and a selection mechanism inspired from SA. Also,
an efficient constraints handling with help of new mapping function (MF) is also suggested for the
LD problem. The new MF maps unfeasible solution to a feasible one that satisfies the equality
constraint. The mentioned solution method was compared with some of the most recently
published techniques in the area (PS method, SA method and Matlab function fmincon) and
original MDE.

New MF ensures the feasible solution and moreover, the improved MDE produces solution with
Fuel Cost on the same level as the original one. In Test Case, the improved MDE returned even
solution with lower Fuel Cost than the original MDE. Other methods such as Pattern Search
(PS) method, Simulated Annealing (SA) and Matlab function fmincon produced markedly worse
solutions than the improved MDE.

This work shows that by combining positive characteristics of individual search techniques, the
resulted hybrid method can present more search capability and robustness than the individual
techniques being combined. This enhanced search capability and robustness is suitable to solve
complex optimization problems like non-convex LD.

The formulated LD problem has several drawbacks which could be resolved in future work. In
proposed version, the LD problem is too deterministic. In real world, the demands are not
known so accurately and other coefficients as well. Then, LD does not consider the possibility
of commitment6 of generators in time horizon and changes of commitments during time period.
The elimination of all these drawbacks is challenge for future work.
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