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MOTIVATION 

 

• Sequential data analysis 

• supervised learning – like any other classifier, not interesting for us, 

 

• unsupervised learning – clustering of sequential data, capturing changes in time 

series dynamics in probabilistic fashion, 

 

• bootstrapping data while using estimated dynamics, 

 

• regime change insights. 
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REPRESENTATION 

 

• 𝐾 hidden, unobservable states 𝑧𝑡 with Markov transition matrix 𝐴 ∈ 𝑅𝐾,𝐾, given by 

a𝑖𝑗 =  𝑃 𝑧𝑡 = 𝑗 𝑧𝑡−1 = 𝑖  and starting probability π𝑖 = 𝑃(𝑧1 = 𝑖), 

 

• observations 𝑥𝑡 with conditional distribution 𝑝 𝑥𝑡 𝑧𝑡 = 𝑘 = 𝑓𝑘 𝑥𝑡 𝛷𝑘) . 

 

• Generally, model λ is described with an unknown set of parameters 𝜃 = 𝜋, 𝐴, 𝜱 . 
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LEARNING  

 

• Model λ 𝜋, 𝐴, 𝜱  has to be fitted to the data 𝑥1:𝑇. 

 

• Unsupervised learning the model is achieved via maximizing the likelihood function, 

 

• Baum-Welch algorithm – local search, multiple initializations, monotonic, 

 

• Particle swarm optimization – global search, costly computation, probabilistic 

constraints, implicit parameter regularization. 

 

• Fit diagnostic with likelihood value and bootstrap for parameter correlation. 
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PARTICLE SWARM OPTIMIZATION 

 

• Problem min
𝑥∈𝛤

𝑓(𝑥) 

• objective function 𝑓,  

• constrained space 𝛤. 

 

• Initialize parameters 𝜔, 𝐶1, 𝐶2, 𝐼, 

• initialize swarm 𝑥𝑖
𝑡 𝑖∈𝐼

, 

• each swarm particle 𝑥𝑖
𝑡 is a solution,  

• iteration at time 𝑡: 

• 𝑛𝑟1, 𝑛𝑟2 ~𝑈[0, 1], 

• particle’s best solution 𝑃𝑖
𝑡, 

• swarm’s best solution 𝑃𝑔
𝑡. 
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INFERENCE 

 

• Conditioned on the fitted model λ(𝜋 , 𝐴 , 𝜱 ) and observations up to time 𝑇 we can 

smooth, filter and predict, i.e., evaluate the posterior distribution 

• 𝑝(𝑧𝑡|𝑥1:𝑇) – past states probability,  

 

• 𝑝(𝑧𝑇|𝑥1:𝑇) – current states probability, 

 

• 𝑝(𝑧𝑇+1|𝑥1:𝑇) – future states probability.  
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DRAWBACKS 

 

• Large number of parameters and static estimates, 

 

• training sequence selection - overfitting to irrelevant data,  

 

• complicated model identification, 

 

• complicated model selection/comparison – likelihood ratio test, R-squared, 

 

• state duration distribution, 𝑃 𝑧𝑡 = 𝑘, … , 𝑧𝑡+𝜏 = 𝑘, 𝑧𝑡+𝜏+1 ≠ 𝑘 = (1 − 𝑎𝑘𝑘) 𝑎𝑘𝑘
𝜏−𝑡, may 

decrease too fast. 

7 



Internal 

 

  

Internal 

 

  

SIMULATED DATA EXAMPLE 

 

• Simulated 500 points from a 2-state auto regressive HMM with known parameters 

 

• 𝜋 = [0.1, 0.9] 

 
• 𝐴 =  

0.95 0.05
0.02 0.98

 

 

• 𝑝𝑘 𝑥𝑡 𝛷𝑘 = 𝜇𝑘 + 𝑏𝑘𝑥𝑡−1 + 𝑁(0,  𝜎𝑘
2), 𝑘 ∈ {1, 2}, 

 

• 𝛷1 = −0.01, 0. 7, 0.1 , 𝛷2 = 0.1, −0. 3, 0.1 . 
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SIMULATED DATA EXAMPLE CONT’D 
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SIMULATED DATA EXAMPLE CONT’D 

 

• Particle swarm trained 2-state HMM with AR(1) emissions well recovers the 

parameters with the highest likelihood estimates 

 

• 𝜋 = [1𝑒 − 5, 1],  

 
• 𝐴 =  

0.9567 0.0433 
0.0211 0.9789

 

 

• 𝛷 1 = −0.0057, 0. 7595, 0.0908 , 𝛷  2 = 0.0896, −0. 3941, 0.1166 . 

 

• Likelihood comparison 

• 𝑙𝑜𝑔𝐿 𝜃 𝑥 = −188 vs. 𝑙𝑜𝑔𝐿 𝜃 𝑥 = −180 

 

• MAP state classification 

• accuracy ~ 94%, with state1/state2 ratio 186/314. 

 

 

 

 

 

10 



Internal 

 

  

Internal 

 

  

REAL DATA APPLICATION 

 

• Synthetic time series, where stationarity and mean reversion is assumed and tested, 

e.g., residuals of cointegrated instruments 

• belief, that the remaining variance is random unexplainable noise, but still might 

contain a certain structure to exploit. 

 

• Fit 2-state t-HMM, 

 

• 𝜇1 = .3, 𝜇2 = −.5, 

 

• based on HMM yet,  

     we don’t short but wait.  
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Thank you for your attention. 
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