The calibration of trading strategies

Michal Hojčka, Riccardo Gismondi R7 CORP k.s.

7.6.2016, Modern Tools for Financial Analysis and Modeling Conference, Prague

Fundamental vs. Technical analysis

• fundamental analysis: based on financial statements, market predictions, economic analysis ...

- technical analysis: based purely on the data and three assumptions
 - the market discounts everything
 - price moves in trends
 - history tends to repeat

Market Data

• Open, High, Low, Close Price

• Candlestick Chart: used to visualize price movements

💾 data <2106x5 double>					
	1	2	3	4	5
1	1.4736	1.4741	1.4724	1.4728	7.3633e+05
2	1.4728	1.4730	1.4694	1.4718	7.3633e+05
3	1.4718	1.4723	1.4704	1.4718	7.3633e+05
4	1.4718	1.4724	1.4716	1.4718	7.3633e+05
5	1.4718	1.4736	1.4718	1.4736	7.3633e+05
6	1.4735	1.4746	1.4731	1.4737	7.3633e+05
7	1.4737	1.4742	1.4735	1.4739	7.3633e+05
8	1.4739	1.4762	1.4721	1.4759	7.3633e+05
9	1.4760	1.4773	1.4736	1.4770	7.3633e+05
10	1.4770	1.4784	1.4754	1.4784	7.3633e+05
11	1.4783	1.4815	1.4778	1.4789	7.3633e+05
12	1.4790	1.4790	1.4764	1.4769	7.3633e+05
13	1.4769	1.4786	1.4755	1.4760	7.3633e+05
14	1.4761	1.4766	1.4735	1.4737	7.3633e+05

Technical Indicators

Trend Indicators: catch the main movement of the market

- pair of long and short EMA
- shortEMA>longEMA => market in up-trend => go long
- shortEMA<longEMA => market in down-trend => go short

Technical Indicators

Momentum Indicators: evaluate the power of the trend

- Relative Strength Index (RSI) values from 0 to 100
- RSI > 70 market is overbought and may soon go down
- RSI < 30 market is oversold and may soon retrace up

Technical Indicators

Volatility Indicators: give information about the size of price movements

- Average True Range (ATR)
- gives the information about the average price movement during one bar

Trading system

• set of rules we provide to the algorithm in order to determine

- when to enter the position, which type of position
- how many contracts do we want to buy
- when to stop the position if the market goes against us (Stop Loss)
- when to exit winning position because we get our aim (Take Profit)
- when to exit position because the trend is reversing
- depends on the set of parameters
 - number of periods in MA
 - parameters in other Indicators
 - value of Stop Loss, Take Profit

Historical Backtest

- evaluates the quality of trading system on past data
- simulates as if we were trading throughout the historical period
- with the chosen trading strategy and its parameters
- inputs data, parameters of the trading system
- outputs trades executed on historical data, equity curve (EC)
- not completely 'real' simulation of live trading slippage

Forward-looking analysis

- In sample (IS):
 - we run historical backtest on these data in order to find 'good' parameters
 - trades are not realistic, as we already know the data a priori
- Out of sample (OoS):
 - we work with this data as if we don't know them
 - we simulate trading in these data with the parameters that performed well in IS

• Forward-looking: we get the trades from unseen data by shifting IS after some time and collecting all trades executed in all OoS contracts, ration between IS and OoS around 4-6 to 1

Calibration of the model

• process of finding the parameters which maximize the score of objective function, which evaluate the quality of trades executed in IS

- objective function takes into account:
 - Profit & Loss
 - Maximum DD
 - slope of EC (consistently good trades vs. few good trades and a lot of bad ones)
 - number of trades: more trades = more slippage

Genetic Algorithm

- problem: possibly huge number of parameters to optimize, cannot evaluate score in each point of parameter space
- solution: using Genetic algorithm, corporate evolution principles to find the extreme of the objective function
- iterative process, starts with random population
- crossover: two members of (i-1)-th generation produce their random crossover
- mutation: member suffers random mutation
- probability to be chosen to crossover/mutation is based on the score of each member
- can be speed-up using parallel or GPU computing

Problems

- Forward-looking EC grows for some time and then it stops growing anymore
- What happened in 2009?
- Did the market change the structure?
- Is there some correlation between the score of objective function in IS and the EC in OoS?
- Did we over fit the strategy?

Predicting power of IS data

20

15

- can we predict the potential behaviour in OoS? • NO!
- examples of unpredictable turn of events in OoS
- far worse than any reasonable quantile of MCgenerated probability distribution

ve Finance and Algorithmic Trading

Correlation between IS and OoS

• we chose the sample of parameters and computed the correlation between score in IS and the PL in OoS

low/none correlation means that

 good correlation means that the calibration is done properly and the trading strategy is robust

Correlation between IS and OoS

- results for FGBL, Daily TF, 4 contracts IS, 1 contract OoS
- MA based signal generator producing number between 0 and 100, optimizing level necessary to enter/close the trade, symmetric case for long/short trades => we optimize 2 parameters
- average correlation between IS and OoS 0.16

Finance and Algorithmic Trading

independently on the type of objective function used

Good/Random/Bad strategies

- FGBL daily TF
- 6 contracts IS
- 2 contracts OoS
- If the market is trending, trend-following trading strategy with virtually any parameters performs reasonably well
- Choosing the best parameters provides a small edge in comparison with random parameters

nic Trading

Good/Random/Bad strategies

5000 4000 3000 2000 1000 Ο -1000 <u>L</u> 2004 2006 2008 2010 2012 2014 2016 2500 2000 1500 1000 500 ο -500 -1000 -1500 ^L... 2004 2006 2008 2010 2012 2014 2016 1000 0 -1000 -2000 -3000 -4000 -5000 -6000 -7000 -8000 ^L... 2004 2006 2008 2010 2012 2014 2016

- FESX daily TF
- 6 contracts IS
- 2 contracts OoS
- Market is not trending sufficiently for our strategy
- Optimizing of parameters reduces our losses

Correlation between IS and OoS

- results for GBPAUD, 2hour TF, 6 contracts IS, 2 contract OoS
- average correlation between IS and OoS 0.00

titative Finance and Algorithmic Trading

- we optimize enter/close level of long and short trades independently => we optimize 4 parameters
- independently on the type of objective function used

Over-Fitting

- Optimal complexity number of parameters which describe the data in a robust way
- Less parameters (underfitting) fail to describe the data properly
- More parameters (overfitting) fit the noise of the data, good performance on IS data, worse performance on OoS data

Over-Fitting

• GBPUSD, daily TF, 4 contracts IS, 1 contract OoS, period 2003D-2010D

• GBPUSD, 2hour TF, 4 contracts IS, 1 contract OoS, period 2003D-2010D

