

Is the Maastricht debt limit safe enough for Slovakia?

Fiscal Limits and Default Risk Premia for Slovakia

Moderné nástroje pre finančnú analýzu a modelovanie

Zuzana Múčka

June 15, 2015

www.rozpoctovarada.sk

Introduction

www.rozpoctovarada.sk

Aims

- 1. **Fiscal Limit:** the point at which, for <u>economic or political reasons</u>, taxes and spending can no longer adjust to stabilize debt.
 - The maximum level of debt that the government is able to service
 - ▶ Fiscal limit distribution is endogenous and arises from the dynamic Laffer curve

Is the Maastricht debt limit safe enough for Slovakia?

Inspiration: Models of **Bi (2011)** and **Bi and Leeper (2010, 2013)** augmented by Slovak economy particularities & expected challenges

- 2. Fiscal Limit distribution depends on economic and political environment

 - Distribution (not a point) => Default is possible at any point on this distribution

Effects of bad policies in bad times

3. **Default risk premia** are determined by the fiscal limit distribution, current state of the economy, distribution of disturbances and **investors' expectations about future**

The snowball effect

Introduction

Key Results

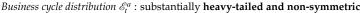
Maastricht debt limit (60%) is definitely not safe enough for Slovakia

- ▶ Economy in its equilibrium: 10% chance of default and 4 p.p risk premium (NB: no QE)
- Sudden fall of productivity by 8% of GDP: 30%-40% chance of default depending on preferred fiscal policy and 12-13 p.p. risk premium (snowball effect)
- ► Fiscal policy matters : Proper & credible decisions about transfers ⇒ Fall in chance of default and the risk premium

Safe Debt Limit : 50% of the GDP

... with the **debt target (equilibrium)** at **40%** of the GDP

Fiscal Limits The Model


The Model I

Approach: small nonlinear DSGE / RBC model of a closed economy without monetary policy used to determine the fiscal limit distribution from the endogenous dynamic Laffer curve

1. Firms: homogeneous goods consumed by households (c_t) and government (g_t)

linear production function:
$$a_t h_t = y_t = c_t + g_t$$
, (1)

technology:
$$a_t = \rho_a a_{t-1} + (1 - \rho_a)a + \mathscr{E}_t^a$$
. (2)

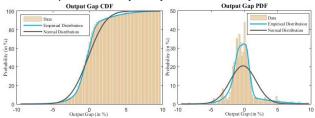
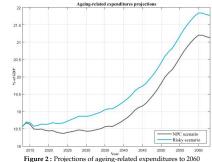


Figure 1 : Business cycle distribution in Slovakia, comparison with normal distribution

The Model II

www.rozpoctovarada.sk

2. Government: government purchase g_t and transfers z_t financed by collecting distorting taxes and issuing non-state-contingent debts b_t (price q_t)


A) Government Purchase *g_t* : all non ageing-related primary expenditures, *stationary & procyclical*

$$g_t = \rho_g g_{t-1} + (1 - \rho_g)g + \mathcal{E}_t^g, \quad \mathcal{E}_t^g \sim \mathcal{N}(0, \sigma_g^2), \zeta_g > 0 \quad (3)$$

B) **Transfers** *z*_{*t*}: all ageing-related expenditures, *always explosive* & *countercyclical*, 2 regimes (NPC, risky)

$$z_{t}(r_{t},a_{t}) = \begin{cases} \mu_{t}^{(1)} z_{t-1} + \zeta_{z} (a_{t}-a) + \mathscr{E}_{t}^{z}, & r_{t} = 1, \\ \mu_{t}^{(2)} z_{t-1} + \zeta_{z} (a_{t}-a) + \mathscr{E}_{t}^{z}, & r_{t} = 2, \end{cases}$$

where both $\bar{\mu}^{(i)} > 1$, $\zeta_z < 0$ and $\mathscr{E}_t^z \sim \mathscr{N}(0, \sigma_z^2)$

C) Tax Rate τ_t levied on labour income: government raises the time-varying tax rate levied on labour when the debt level goes up

(4)

$$\tau_t = \tau + \gamma (b_t^d - b), \qquad \gamma > 0.$$
(5)

The Model III

www.rozpoctovarada.sk

D) Bond contract is not enforceable, partial default is possible & depends on the effective fiscal limit $b_t^* \sim \mathscr{B}(a_t, g_t, r_t)$

post-default government liability
$$b_t^d = (1 - \Delta_t)b_{t-1}, \quad \Delta_t = \delta_t \mathbf{1}_{b_{t-1} \ge b_t^*}, \quad \delta_t \sim \Omega.$$
 (6)

E) Budget Constraint

$$\tau_t a_t h_t + q_t b_t = b_t^d + z_t + g_t \tag{7}$$

3. Households: choose the level of consumption c_t , labour supply and bonds b_t to maximise

$$\max \mathbb{E}_t \sum_{k=0}^{\infty} \beta^k U(c_{t+k}, h_{t+k}), \qquad U(c_t, h_t) = \log c_t + \phi \log(1-h_t),$$

w.r.t. their budget constraint (τ_t , z_t , Δ_t are given)

FOC:
$$\phi \frac{c_t}{1-h_t} = -\frac{\partial U/\partial h_t}{\partial U/\partial c_t} = a_t(1-\tau_t), \quad q_t = \beta \mathbb{E}_t \left[(1-\Delta_{t+1}) \frac{c_t}{c_{t+1}} \right].$$
 (8)

Transversality condition: $\lim_{j \to \infty} \mathbb{E}_t \left\{ \beta^{j+1} \frac{\partial U/\partial c_{t+j+1}}{\partial U/\partial c_t} \left(1 - \Delta_{t+j+1} \right) b_{t+j} \right\} = 0$ (9)

Fiscal Limits Idea Behind

Fiscal Limit Concept

www.rozpoctovarada.sk Two Pillars:

1. Iterate the government budget constraint (7) for the primary surplus $\omega_t = \tau_t a_t h_t - z_t - g_t$ assuming no default in the future:

$$b_{t-1} = \frac{\omega_t + q_t b_t}{1 - \Delta_t} = \frac{\omega_t}{1 - \Delta_t} + \frac{q_t}{1 - \Delta_t} \mathbb{E}_t \frac{\omega_{t+1} + q_{t+1} b_{t+1}}{1 - \Delta_{t+1}} = \dots = \mathbb{E}_t \sum_{k=0}^T \left[\prod_{j=1}^k \frac{q_{t+j-1}}{1 - \Delta_{t+j-1}} \right] \frac{\omega_{t+k}}{1 - \Delta_t} + \mathbb{E}_t \prod_{j=0}^T \frac{q_{t+j}}{1 - \Delta_{t+j}} b_{t+T}$$

maximal b_{t-1} requires maximal current & expected future primary surpluses \Rightarrow max. tax revenues 2. Laffer curve: (1) a (8) \Rightarrow Bijection between (a_t , g_t) and the rate maximising tax revenues

$$\begin{aligned} \Theta_{t}^{\max}(a_{t},g_{t}) &= (1+2\phi)a_{t} - \phi g_{t} - 2\sqrt{(1+\phi)}\phi a_{t}(a_{t}-g_{t}) \\ \tau_{t}^{\max}(a_{t},g_{t}) &= 1+\phi - \sqrt{(1+\phi)}\phi(a_{t}-g_{t})/a_{t} \end{aligned}$$

Fiscal Limit: sum of the expected discounted maximum fiscal surplus in all future periods conditional on the existing state

$$\mathscr{B}_{t}^{*} = \mathbb{E}_{t} \sum_{k=0}^{\infty} \beta^{k} \frac{u^{\max}(a_{t+k}, g_{t+k})}{u^{\max}(a_{t}, g_{t})} \left[\Theta^{\max}(a_{t+k}, g_{t+k}) - g_{t+k}(a_{t+k}, \mathscr{E}_{t+k}^{g}) - z(r_{t+k}, a_{t+k}, \mathscr{E}_{t+k}^{z}) \right]$$
(10)

 $\Rightarrow \text{state space determined by } \{a_{t+j}\}_{j=1}^{\infty}, \{g_{t+j-1}\}_{j=1}^{\infty}, \{r_{t+j}\}_{j=1}^{\infty}, \{z_{t+j-1}\}_{j=1}^{\infty} \& \text{ importance of shock processes} \}$

Fiscal Limits Model Calibration

Model Calibration & Solution

Procedure: MCMC method used to simulate the fiscal limit distribution conditional on current state and exogenous shock distributions

- discretise the state-space $\mathscr{S}_t = (a_t, g_t, r_t, z_t)$
- ▶ MCMC : at each point $s_t \in \mathcal{S}_t$ generate the draws of shocks $\{\mathscr{E}^a_{t+j}\}_{1 \leq j \leq T}^{(i)}, \{\mathscr{E}^s_{t+j}\}_{1 \leq j \leq T}^{(i)}, \{\mathscr{E}^s_{t+j}\}_{1 \leq j \leq T}^{(i)}, \{\mathscr{E}^s_{t+j}\}_{1 \leq j \leq T}^{(i)}\}_{1 \leq j \leq T}$ and $\{\mathscr{E}^s_{t+j}\}_{1 \leq j \leq T}^{(i)}$ for 200 periods $(i = 1, ..., 10^6)$ and calculate $\mathscr{B}^{(i)}_t(s_t)$ assuming that the tax rate is always at the peak of the dynamic Laffer curves
- aggregate & smooth the simulated results

Parameters:

- ▶ Equilibrium: calibration is based on long-term predictions and expert judgement
 - ▶ transfers (age-related expenses) z = 18.6%GDP, $\bar{\mu}_1 = 1.0026$, $\bar{\mu}_2 = 1.0032$, government purchase (other expenses) g = 16.4% GDP
 - **debt** b = 40% GDP, $\beta = 0.95$, **tax rate** $\tau = 39.14\%$, labour supply h = 1/4, productivity a = 1
- Dynamics: Bayesian estimates of model parameters

Scenario	$\bar{\mu}_1$	$\bar{\mu}_2$	ζg	ζz	$p^{(1)}/p^{(2)}$	$\rho_{\rm a}$	$\rho_{\mathbf{g}}$	$\sigma_{\rm g}$	$\sigma_{\rm Z}$
no policy change	1.0026	1.0032	0	0	1/0	0.7205	0.9229	0.0233	0.0277
 procyclical g.purchase 	1.0026	1.0032	0.0219	0	1 / 0	0.7205	0.9229	0.0233	0.0277
 countercyclical transfers 	1.0026	1.0032	0	-0.0159	1 / 0	0.7205	0.9229	0.0233	0.0277
risky scenario	1.0026	1.0032	0	0	0 / 1	0.7205	0.9229	0.0233	0.0277
 two regimes of transfers 	1.0026	1.0032	0	0	0.75 / 0.75	0.7205	0.9229	0.0233	0.0277
 all features switched on 	1.0026	1.0032	0.0219	-0.0159	0.75 / 0.75	0.7205	0.9229	0.0233	0.0277

Baseline Scenario (Business Cycle) Countercyclical Transfers (Business cycle) Procyclical gov.purchase (Business Cycle) 100 100 80 80 Probability (%) 0 09 09 (%) Probability (09 09 Probability 60 40 - bad times - bad times bad times normal times normal times normal times 20 20 20 good times good times good times 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 Debt / GDP (%) Debt / GDP (%) Debt / GDP (%) Baseline Scenario (Level of Transfers) Procyclical gov.purchase (Level of Transfers) Countercyclical Transfers (Level of Transfers) 100 100 100 80 80 80 Probability (%) 0 0 0 0 0 Probability (%) Probability (%) 60 60 40 40 low low low normal normal normal 20 20 20 -high high - high 50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300 0 0 Debt / GDP (%) Debt / GDP (%) Debt / GDP (%)

Figure 3: CDF of the fiscal limit distribution for for various levels of technology and transfers: the NPC scenario under baseline setting with heavy-tailed business cycle (left), with procyclical government purchase (middle) or countercyclical transfers (right). Dashed lines correspond to the NPC regime with baseline setting.

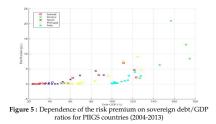
Fiscal Limit: Quantitative Analysis I

Risky Scenario (Business Cycle) Normal Busines Cycle (Business Cycle) All Features (Business Cycle) 100 100 80 80 Probability (%) Probability (%) 00 09 09 Probability (%) 60 60 40 40 bad times bad times - bad times normal times normal times normal times 20 20 good times good times good times 0 50 100 150 200 250 300 250 0 50 100 150 200 300 0 50 100 150 200 250 300 Debt / GDP (%) Debt / GDP (%) Debt / GDP (%) **Risky Scenario (Level of Transfers)** Normal Business Cycle (Level of Transfers) All Features (Level of Transfers) 100 100 100 80 80 Probability (%) 0 0 0 Probability (%) 05 09 09 Probability (%) 60 40 low low low normal normal normal 20 20 20 high · high high 0 0 50 150 200 300 100 250 50 100 150 200 250 300 50 100 150 200 300 Debt / GDP (%) Debt / GDP (%) Debt / GDP (%)

Figure 4: Impact of model parameters on the fiscal limit distribution for various levels of technology and transfers: higher growth rate of transfers (left) or normally distributed business cycle (middle). Dashed lines correspond to the NPC regime with baseline setting with heavy-tailed empirically distributed business cycle. Right plots compare the distribution of the fiscal limit for the regime-switching, always explosive & countercyclical transfer, pro-cyclical government purchase under heavy-tailed left-skewed empirically distributed business cycle for transfers currently growing accordingly to either the NPC (thick lines) or risky (dashed) scenarios.

Fiscal Limit: Quantitative Analysis II

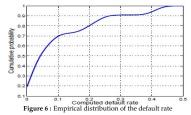
Nonlinear Model


www.rozpoctovarada.sk

Aim: Assuming (5), (6), and (8), find the debt rule b_t , that solves

$$\frac{(1-\Delta_t)b_{t-1} + g_t + z_t - \tau_t a_t h_t}{b_t} = \beta \mathbf{E}_t \left\{ [1-\Delta_{t+1}] \frac{c_t}{c_{t+1}} \right\}, \quad (11)$$

Determine the debt price q_t and the default risk premium r_t based on the debt rule b_t


$$r_t = 1/q_t - 1/q_t^{\Delta_t = 0}.$$
 (12)

Solution: monotone mapping method (Coleman, Davig), numerical solution (Sims)

Calibration: reuse values of parameters from the fiscal limit distribution model

- tax sensitivity γ = 0.0724 (OLS, effective tax rate incl. social insurance contributions)
- empirical distribution of the default rate Ω : defaults of emerging countries (1983-2011)

Default Risk Premium Quantitative Analysis

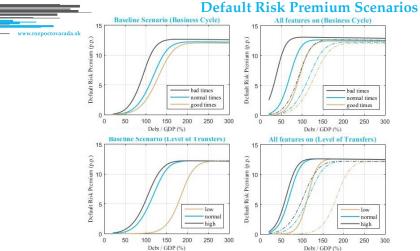


Figure 7: Default risk premium for various levels of productivity and transfers estimated for heavy-tailed left-skewed empirically distributed business cycle. Left figures are obtained assuming the NPC regime with baseline setting. Right figures assume the regime-switching, always explosive & countercyclical transfers and pro-cyclical government purchase, and transfers grow accordingly to either the NPC (thick lines) or risky (dashed) scenarios.

Conclusions

Conclusions

www.rozpoctovarada.sk Determinants of the fiscal limit distribution and the public finance long-term sustainability

- 1. Steeply growing age-related transfers = time bomb for public finance
 - Current level and expected future policies (and their credibility) matter
 - Transfers in the role of automatic stabilizers need to be designed carefully

2. High vulnerability of Slovak economy towards external factors

Extreme situations are not rare, business cycle is very volatile fiscal limit

 \implies Be aware of *bad policies in bad times*

Maastricht debt limit (60%) is definitely not safe enough for Slovakia

- ▶ Economy in its equilibrium: 10% chance of default and 4 p.p risk premium (NB: no QE)
- Sudden fall of productivity by 8% of GDP: 30%-40% chance of default depending on preferred fiscal policy and 12-13 p.p. risk premium (snowball effect)
- \blacktriangleright Fiscal policy matters : Proper & credible decisions about transfers \Longrightarrow Fall in chance of default and the risk premium

Safe Debt Limit: 50% of the GDP

... with the **debt target (equilibrium)** at **40%** of the GDP

Model Extentions

Model Extentions

www.rozpoctovarada.sk

Attempts that would get us nowhere

- ► One tax is not enough⇒introduce **consumption tax**
- ▶ Use a different **utility function** (vary Frisch elasticity, consumption-leisure non-separability)

Put in the pigeon hole

- Slovakia as an open export-oriented economy:
 - Incorporate the foreign demand, export and import of goods
 - Modify the production function (combine labour and import)
 - ▶ This should eliminate the non-desirable small elasticity of tax revenues w.r.t. output gap.
- State-dependent transition matrix (used in the MCMC algorithm)
 - Matrix components reflect the evolution of tax rate and transfers and thus introduce a deeper structure in the policy credibility.
 - This results in higher chance of default for low debt and more disperse distribution on its left tail.

Implemented ... and evokes great white hope

- Use the default-free rate (q^{Δ=0}) instead of the constant risk-free rate β in the formula for determining the fiscal limit distribution.
- Fiscal limit distribution & discount bond price determined together: iterative procedure, feedback effect of default risk premium on fiscal limit distribution.

Literature

Literature Overview

www.rozpoctovarada.sk 1. Model

Bi, **H**. (2011). *Sovereign Default Risk Premia, Fiscal Limits and Fiscal Policy*. Bank of Canada, WP 10-11/2011.

Bi, **H**. and Leeper, **E**. **M**. (2013). *Analyzing Fiscal Sustainability*. Bank of Canada, WP 13-27/2013. **Bi**, **H**. and Leeper, **E**. **M**. (2010). *Sovereign Debt Risk Premia and Fiscal Policy in Sweden*. National Bureau of Economic Research, Inc., NBER Working Papers 15810.

2. Solution Techniques

Coleman, Wilbur John, I. (1991). *Equilibrium in a Production Economy with an Income Tax.* Econometrica, 59(4):1091–1104.

Davig, T. (2004). *Regime-switching debt and taxation.* Journal of Monetary Economics, 51(4):837–859.

Sims, C. (1999). *Matlab Optimization Software*. QM&RBC Codes, Quantitative Macroeconomics & Real Business Cycles.

3. Data & Methodology

Council for Budget Responsibility, (2014). *Report on the Long-term Sustainability of Public Finances.*

Odor, L. and Jurasekova-Kucserova, J. (2014). Finding Yeti: More robust estimates of output gap in Slovakia.

Council for Budget Responsibility

Imricha Karvaša 1 Bratislava 1 813 25 Slovakia

Thank you for your attention