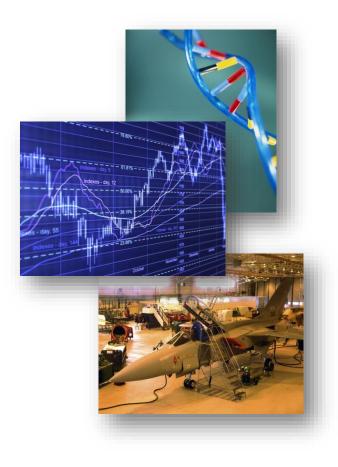
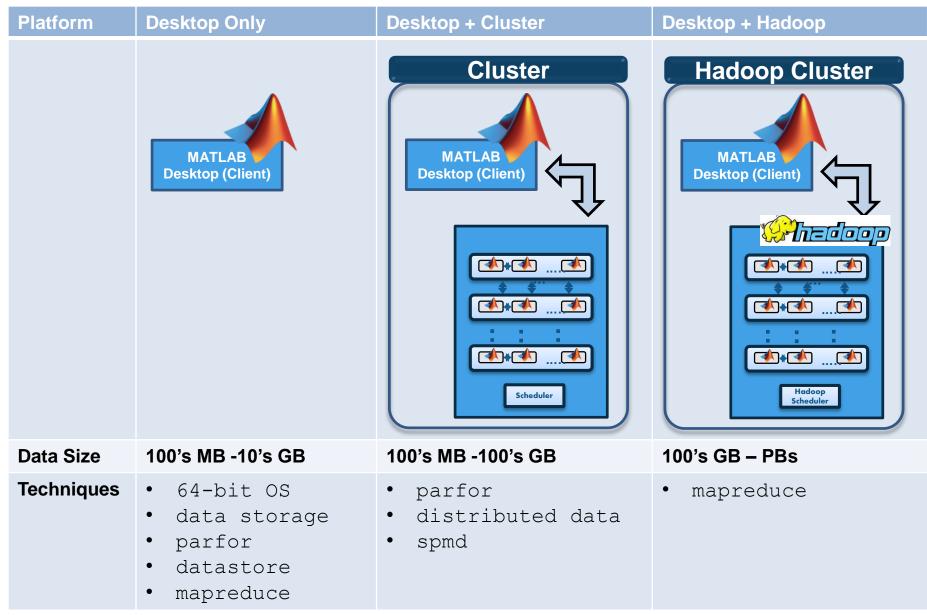


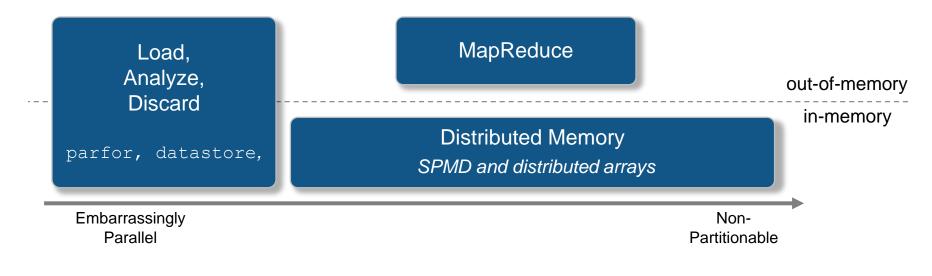
Tackling Big Data with MATLAB


Francesca Perino Application Engineering Team - MathWorks

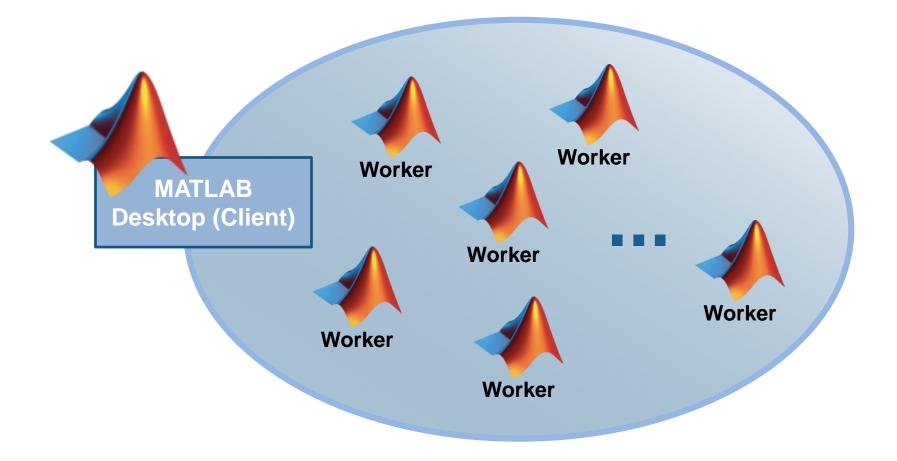
© 2014 The MathWorks, Inc.


Running into "Big Data" Issues?

- "Out of memory"
 - Running out of address space
- Performance
 - Takes too long to process all of your data
- Slow processing (swapping)
 - Data too large to be efficiently managed between RAM and virtual memory



Options for Handling Large Data


Techniques for Big Data in MATLAB

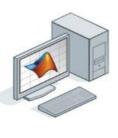
Complexity

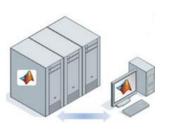
Parallel Computing with MATLAB

Example: Determining Land Use Using Parallel for-loops (parfor)

Data

- Arial images of agriculture land
- 24 TIF files
- Analysis
 - Find and measure irrigation fields
 - Determine which irrigation circles are in use (by color)
 - Calculate area under irrigation





When to Use parfor

Data Characteristics

- Can be of any format (i.e. text, images) as long as it can be broken into pieces
- The data for each iteration must fit in memory
- Compute Platform
 - Desktop (Parallel Computing Toolbox)
 - Cluster (MATLAB Distributed Computing Server)
- Analysis Characteristics
 - Each iteration of your loop must be independent

Access Big Data

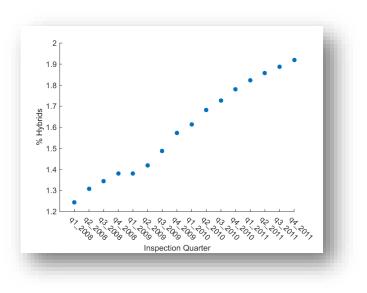
datastore

- Easily specify data set
 - Single text file (or collection of text files)
- Preview data structure and format
- Select data to import using column names
- Incrementally read subsets of the data

E Desktop	*	Name	Date modified	Туре	Size	
) Downloads		1987.csv	8/13/2014 3:37 PM	WinZip File	12,356 KB	
Google Drive		1988.csv	8/13/2014 3:45 PM	WinZip File	48,339 KB	
Mathworks		🍕 1989.csv	8/13/2014 3:44 PM	WinZip File	48,050 KB	
S Recent Places		🔍 1990.csv	8/13/2014 3:45 PM	WinZip File	50,822 KB	
ARC 1.1		🔍 1991.csv	8/13/2014 3:43 PM	WinZip File	48,709 KB	
Libraries	Ξ	🔍 1992.csv	8/13/2014 3:46 PM	WinZip File	48,869 KB	=
Jocuments		🍕 1993.csv	8/13/2014 3:43 PM	WinZip File	48,938 KB	
Pictures		🍕 1994.csv	8/13/2014 3:54 PM	WinZip File	49,926 KB	
Videos		🔍 1995.csv	8/13/2014 4:06 PM	WinZip File	73,127 KB	
S videos		🔍 1996.csv	8/13/2014 4:07 PM	WinZip File	74,110 KB	
🝓 Homegroup		🍕 1997.csv	8/13/2014 4:09 PM	WinZip File	74,908 KB	
		🔍 1998.csv	8/13/2014 4:06 PM	WinZip File	74,887 KB	

ans =			
Year	Month	DayofMonth	DayOfWeek
1987	10	21	3
1987	10	26	1
1987	10	23	5
1987	10	23	5

```
airdata = datastore('*.csv');
airdata.SelectedVariables = {'Distance', 'ArrDelay`};
data = read(airdata);
```



Example: Vehicle Registry Analysis Using a DataStore

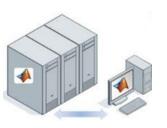
Data

- Massachusetts Vehicle Registration
 Data from 2008-2011
- 16M records, 45 fields

muni_id	veh_zip	insp_year	model_year	make
325	1089	2011	2008	'Hyundai'
325	1089	2009	2008	'Hyundai'
288	1776	2011	2008	'Acura'
288	1776	2008	2008	'Acura'
145	2364	2011	2005	'Chevrolet
325	1089	2010	2008	'Hyundai'
325	1089	2011	2008	'Hyundai'
288	1776	2009	2008	'Acura'

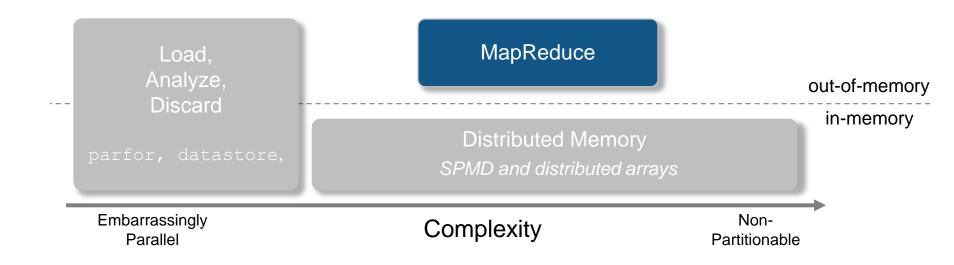
- Analysis
 - Examine hybrid adoptions
 - Calculate % of hybrids registered by quarter
 - Fit growth to predict further adoption





When to Use datastore

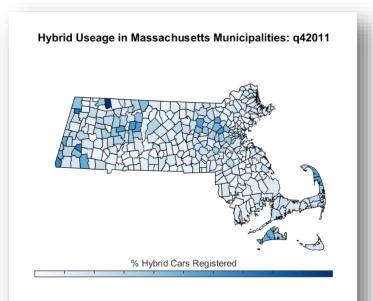
Data Characteristics


- Text data in files, databases or stored in the Hadoop Distributed File System (HDFS)
- Compute Platform
 - Desktop
- Analysis Characteristics
 - Supports Load, Analyze, Discard workflows
 - Incrementally read chunks of data, process within a while loop

Techniques for Big Data in MATLAB

mapreduce

	Da	ita St	ore			Мар		Shuffle nd Sort	R	educe
Veh_typ	03.08	Q4_08	Q1_09	Hybrid	Hybrid 0	Key: Q3_08	l Hybrid			
					1	Ney. Q5_00		Key: Q3_08	Кеу	% Hybrid (Value)
Car	1	1	1	0	1		1		Q3 08	0.4
SUV Car	0 1	1 1	1 1	1	0		0		Q4_08	0.67
Car	0	0	1	1	1	Key: Q4_08	0		Q1_09	0.75
Car	0	1	1	1	1		i i	I		
Car	1	1	1	1	1		0			
Car	0	0	1	1	0		1	Key: Q4_08		
SUV	0	1	1	0	1	Key: Q1_09	1	Ney. Q4_00	1	
Car	1	1	1	0	1		1			
SUV	1	1	1	1	1		0			
Car	0	1	1	1	1		1		I	
Car	1	0	0	0	0	Key: Q3_08	I			
					0		0			
							1	Key: Q1_09		
					0	Key: Q4_08	1			
					1				-	
					0				I	
					0 1	Key: Q1_09	1			
							\sim		I	12

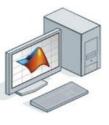


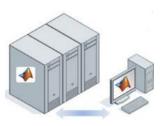
Example: Vehicle Registry Analysis Using MapReduce

Data

- Massachusetts Vehicle Registration
 Data from 2008-2011
- 16M records, 45 fields
- Analysis
 - Examine hybrid adoptions
 - Calculate % of hybrids registered
 - By Quarter
 - By Regional Area
 - Create map of results

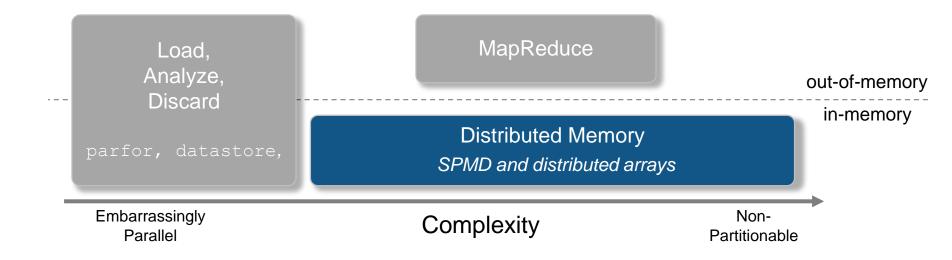
muni_id	veh_zip	insp_year	model_year	make
325	1089	2011	2008	'Hvundai'
325	1089	2009	2008	'Hyundai'
288	1776	2011	2008	'Acura'
288	1776	2008	2008	'Acura'
145	2364	2011	2005	'Chevrole
325	1089	2010	2008	'Hyundai'
325	1089	2011	2008	'Hyundai'
288	1776	2009	2008	'Acura'





When to Use mapreduce

Data Characteristics

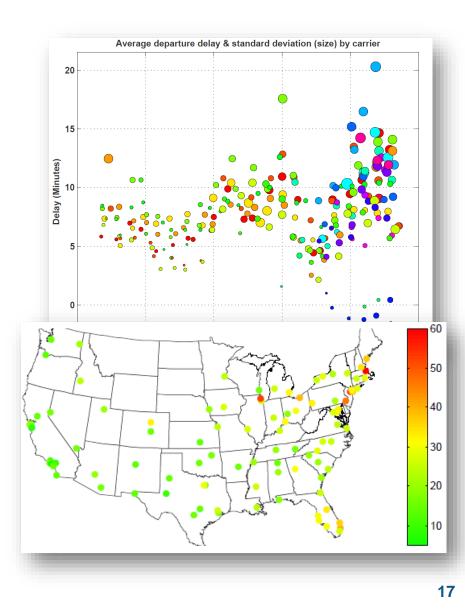

- Text data in files, databases or stored in the Hadoop Distributed File System (HDFS)
- Dataset will not fit into memory
- Compute Platform
 - Desktop
 - Scales to run within Hadoop MapReduce on data in HDFS
- Analysis Characteristics
 - Must be able to be Partitioned into two phases
 - 1. Map: filter or process sub-segments of data
 - 2. Reduce: aggregate interim results and calculate final answer

Techniques for Big Data in MATLAB

spmd blocks

spmd

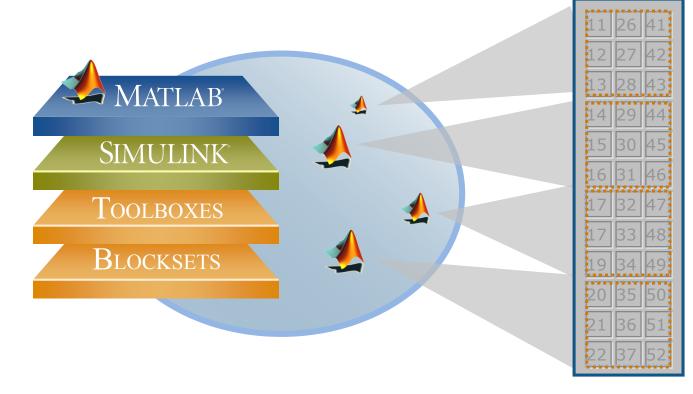
% single program across workers
end


- Mix parallel and serial code in the same function
- Run on a pool of MATLAB resources
- Single Program runs simultaneously across workers
- Multiple Data spread across multiple workers

Example: Airline Delay Analysis

Data

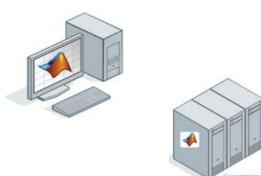
- BTS/RITA Airline
 On-Time Statistics
- 123.5M records, 29 fields
- Analysis
 - Calculate delay patterns
 - Visualize summaries
 - Estimate & evaluate predictive models



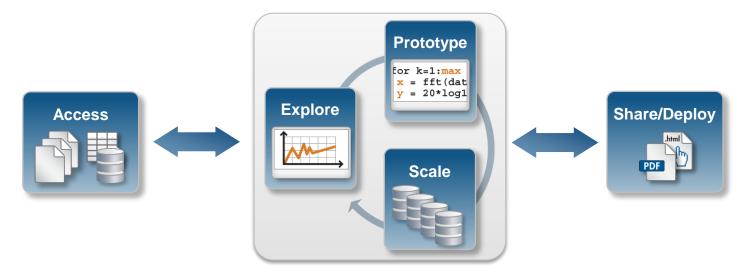
Distributed Arrays

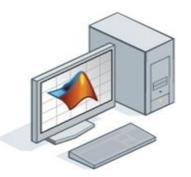
Available from

- Parallel Computing Toolbox
- MATLAB Distributed Computing Server

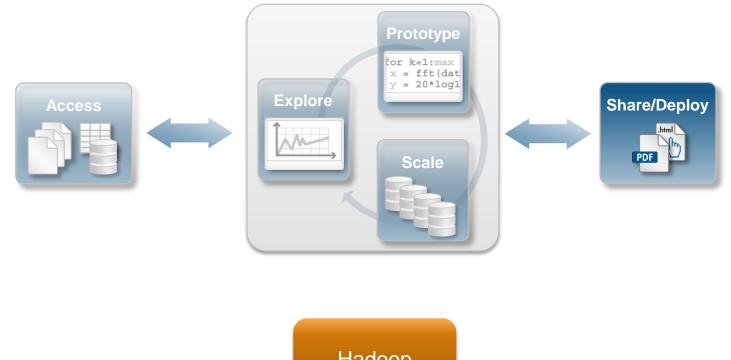

Remotely Manipulate Array from Desktop

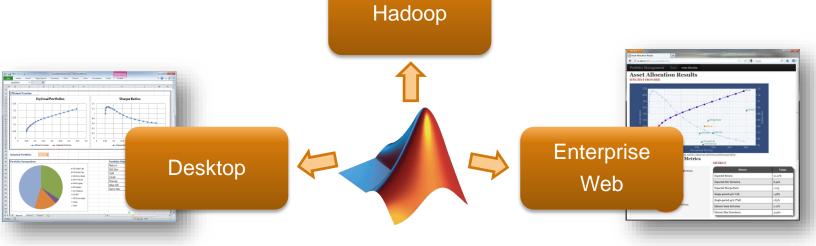
Distributed Array Lives on the Cluster


When to Use Distributed Memory


- Data Characteristics
 - Data must be fit in collective memory across machines
- Compute Platform
 - Prototype (subset of data) on desktop
 - Run on a cluster or cloud
- Analysis Characteristics
 - Consists of:
 - Parts that can be run on data in memory (spmd)
 - Supported functions for distributed arrays

Big Data Analysis with MATLAB


Work on the desktop



Scale capacity as needed

Deploy Big Data Algorithms

Learn More

- MATLAB Documentation
 - Strategies for Efficient Use of Memory
 - Resolving "Out of Memory" Errors
- Big Data with MATLAB
 - <u>www.mathworks.com/discovery/big-data-matlab.html</u>

How to work with huge and fast data sets

Big data refers to the dramatic increase in the amount and rate of data being created and made availa analysis.

A primary driver of this trend is the ever increasing digitization of information. The number and types o acquisition devices and other data generation mechanisms are growing all the time.

Big data sources include streaming data from instrumentation sensors, satellite and medical imagery, from security cameras, as well as data derived from financial markets and retail operations. Big data s these sources can contain gigabytes or terabytes of data, and may grow on the order of megabytes or gigabytes per day.

Big data represents an opportunity for analysts and data scientists to gain greater insight and to make informed decisions, but it also presents a number of challenges. Big data sets may not fit into available

- MATLAB MapReduce and Hadoop
 - <u>www.mathworks.com/discovery/matlab-mapreduce-hadoop.html</u>

MapReduce on the Desktop

Explore and analyze big data sets on your desktop with the MapReduce programming technique built into MATLAB.

Creating algorithms using MapReduce: max, mean, mean by group, histograms, covariance and related quantities, summary statistics by group, logistic regression, tall skinny QR

- » Get started with MATLAB MapReduce
- » MapReduce design patterns
- » Use MATLAB MapReduce with relational databases

MapReduce on Hadoop

Execute MATLAB MapReduce based algorithms within Hadoop MapReduce to explore and analyze data that is stored and managed on Hadoop, using MATLAB Distributed Computing Server.

» Run MATLAB MapReduce on Hadoop

Create applications and libraries based upon MATLAB MapReduce for deployment within production instances of Hadoop, using MATLAB Compiler.

» Deploy MATLAB MapReduce applications to Hadoop