Contents	Motivation	Nonlinearity	Model	Empirical results	Conclusion

Nonlinear DSGE Model of the Czech Economy with Time-varying Parameters

Stanislav Tvrz, Osvald Vašíček

Faculty of Economics and Administration, Masaryk University, Brno

Modern Tools for Financial Modeling and Analysis June 5, 2014, Praha

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Contents	Motivation	Nonlinearity	Model	Empirical results	Conclusion

- Did any structural changes occur during the turbulent period of recent financial and economic crisis of 2008–2009?
- Which structural parameters did change? Were the changes temporary or permanent?
- How was the behaviour of the economy affected by these structural changes?
- Which changes are specific for the Czech economy and which correspond to the europe-wide trends?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• time-varying parameters are defined as unobserved states

$$\theta_t = (1 - \alpha_t^{\theta}) \cdot \theta_{t-1} + \alpha_t^{\theta} \cdot \overline{\theta} + \nu_t^{\theta}$$

- $\overline{\theta}$ is initial value of parameter θ_t
- α^{θ}_t is a time-varying adhesion parameter (panel)

•
$$lpha^ heta=$$
 0 \Rightarrow random walk,

•
$$\alpha^{\theta} = 1 \Rightarrow$$
 white noise around $\overline{\theta}_t$,

•
$$lpha^{ heta}=$$
 0.25 \Rightarrow our choice

•
$$\nu_t^{\theta} \sim N(0, \sigma_{\nu}^{\theta})$$

 \Rightarrow nonlinearity is introduced into the model \Rightarrow nonlinear state-space model

$$x_t = g(x_{t-1}, w_{t-1})$$

$$y_t = h(x_t, v_t)$$

- Kalman filter is optimal for linear systems
- Extended Kalman filter (Jacobian matrix of the state vector) can be used for nonlinear systems but performs poorly for severe nonlinearities
- \Rightarrow Nonlinear filters
 - with additive Gaussian noise Extended Kalman filters

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Monte Carlo based
- Transformation based
- with non Gaussian noise Particle filters
 - Gaussian particle filter
 - Unscented particle filter

- 1 Initialization: t = 0, set the prior mean \overline{x}_0 and covariance matrix P_0 for the state vector x_t .
- 2 Generating particles: Draw a total of N particles $x_{t+1}^{(i)}$, i = 1, ..., N from distribution $p(x_{t+1})$ with mean $\overline{x}_{t+1|t}$ and covariance matrix $P_{t+1|t}$ (transition equation). Calculate $\overline{y}_{t+1|t}$ (measurement equation) and covariance matrices $P_{y,y}$ and $P_{x,y}$.
- 3 Kalman filter:

$$K_{t+1} = P_{x,y} (P_{y,y})^{-1},$$

$$\overline{x}_{t+1} = \overline{x}_{t+1|t} + K_{t+1} (y_{t+1} - \overline{y}_{t+1|t}),$$

$$P_{t+1} = P_{t+1|t} - K_{t+1} P_{y,y} (K_t)^T$$

うして ふゆう ふほう ふほう うらつ

4 Time Update: t = t + 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 20 runs of the UPF with 30.000 particles each were calculated for the second order approximation of the model.
- Initial values of the time-varying parameters $(\overline{\theta})$ were set to the posterior means of the Bayesian estimation of the model with constant parameters
- Standard deviations of time-varying parameter innovations (σ_{ν}^{θ}) were set proportional to the estimated posterior means (10 %).
- Bayesian Random Walk Metropolis-Hastings estimation: two chains of 1.000.000 draws each, 50% burn-in sample, acceptance rate near 30%.

Contents	Motivation	Nonlinearity	Model	Empirical results	Conclusion
Model					

- Overall structure of the DSGE model of a small open economy (SOE) is based on Shaari (2008), who incorporated the financial accelerator mechanism á la Bernanke *et al.* (1999) into the basic SOE model of Galí and Monacelli (2005).
- The model contains following optimizing representative agents: households, entrepreneurs and domestic and foreign retailers.
- The monetary policy of the central bank is modelled with the use of forward looking Taylor rule.

• Foreign sector observables are modelled as SVAR(1) block.

Contents	Motivation	Nonlinearity	Model	Empirical results	Conclusion
Data					

- The model is estimated on two sets of data: CZ+EA (blue) and EA+US (red)
- Quarterly time series of the period between 1999Q2 and 2013Q4, 59 observations
- Domestic economy: real aggregate product, real investment, consumer price index , 3-month PRIBOR (3-month EURIBOR)
- Foreign economy EA17 (US): real aggregate product, CPI index and 3-month EURIBOR (3-month T-Bill rate)
- CZK/EUR (EUR/USD) real exchange rate
- Original time series were transformed so as to express percentage deviations from steady state (HP filter, $\lambda = 1600$)

Filtered observables (deviations from steady state in per cent)

Contents	Motivation	Nonlinearity	Model	Empirical results	Conclusion
Calibrat	ion				

Par	Parameter					
β	Discount factor	0.995				
α	Capital share in production	0.350				
δ	Capital depreciation rate	0.025				
μ	Steady-state domestic mark-up	1.200				
Ω	Household's share in labour supply	0.990				

Model

Estimation results

		Pr	ior	CZ Po	sterior	EA Po	sterior	
Para	meter Distribu	ution	Mean	Std	Mean	Std	Mean	Std
Stru	ctura parameters							
Υ	Habit persistence	В	0.60	0.05	0.60	0.05	0.68	0.06
Ψ	Inv. elast. of lab. supply	G	2.00	0.50	1.25	0.35	0.88	0.26
ψ^{B}	Debt-elastic risk premium	G	0.05	0.02	0.02	0.01	0.02	0.01
η	Home/foreign elast. subst.	G	0.65	0.10	0.52	0.08	0.43	0.02
κ	Price indexation	В	0.50	0.10	0.49	0.09	0.44	0.09
γ	Pref. bias to foreign goods	sВ	0.40	0.15	0.48	0.07	0.27	0.04
θ_H	Home goods Calvo	В	0.70	0.10	0.82	0.03	0.80	0.03
θ_F	Foreign goods Calvo	В	0.70	0.10	0.84	0.02	0.81	0.03
ψ'	Capital adjustment costs	G	8.00	3.00	11.5	2.92	15.5	3.35
Fina	ncial frictions							
Г	Leverage ratio ss ratio	G	2.00	0.50	1.41	0.24	1.16	0.21
ς	Bankruptcy rate	В	0.025	0.015	0.05	0.02	0.02	0.01
χ	Financial accelerator	G	0.05	0.015	0.04	0.01	0.04	0.01
Taylor rule								
ρ	Interest rate smoothing	В	0.70	0.10	0.86	0.02	0.74	0.04
β_{π}	Inflation weight	G	1.50	0.20	1.75	0.23	1.76	0.23
Θ_y	Output gap weight	G	0.50	0.20	0.16	0.05	0.22	0.06

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへで

Contents	Motivation	Nonlinearity	Model	Empirical results	Conclusion

Estimation results, shock parameters

			Pri	or	Poster	ior Mean
Param	eter Distr	ibution	Mean	Std	CZ	EA
Autoco	orrealtion coefficients					
ργ	Domestic productivity	В	0.50	0.20	0.58	0.47
ρυιρ	Uncovered interest paris	ty B	0.50	0.20	0.63	0.79
ριορ	Law of one price	В	0.50	0.20	0.93	0.84
ρ _{NW}	Entrepreneurial net wor	th B	0.50	0.20	0.44	0.40
Standa	rd deviations					
σ_{Y}	Domestic productivity	IG	1.00	∞	1.09	0.38
σUIP	Uncovered interest paris	ty IG	0.50	∞	0.27	0.24
σιορ	Law of one price	IG	0.50	∞	3.22	5.05
σ_{NW}	Entrepreneurial net wor	th IG	1.00	∞	1.84	1.48
σ_{MP}	Monetary policy	IG	0.50	∞	0.08	0.10
σ_{V^*}	Foreign output	IG	1.00	∞	0.52	0.54
σ_{π^*}	Foreign inflation	IG	0.50	∞	0.14	0.30
σ_{r^*}	Foreign interest rate	IG	0.50	∞	0.08	0.10

Measurement errors (deviations from steady state in per cent)

Filtered shock innovations (deviations from steady state in per cent)

(□) (圖) (E) (E) [E]

Contents Motivation Nonlinearity Model **Empirical results** Con-

Correlation of time-varying parameters

Para	meter	Correlation						
χ	Financial accelerator	0.66						
ς	Bankruptcy rate	-0.13						
Ψ_I	Capital adj. costs	0.71						
Г	Leverage ratio ss	0.64						
γ	Foreign goods pref. bias	0.19						
θ_H	Domestic Calvo param.	0.34						
β_{π}	Taylor rule, inflation	-0.20						
Θ_y	Taylor rule, output gap	0.25						
ρ^{\cdot}	Tylor rule, smoothing	-0.18						

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Contents	Motivation	Nonlinearity	Model	Empirical results	Conclusion
Conclusio	on				

- Results of the estimation suggest that some structural changes occurred during recent financial and economic crisis
- The structural changes were probably temporary as the parameters tend to return to their initial values
- Some parameters showed only negligible deviations from their initial values (elast. of intertemp subst., risk premium elast., inflation indexation)
- Some parameters of the financial sector, openness parameter, Calvo parameters and interest rate smoothing parameter changed markedly during the recent economic crisis

- Overall, the estimated trajectories show many similarities between the development in the Czech economy and in the euro area with some differences in the magnitude of the deviations and timing.
- The differences can be attributed to earlier onset and more dramatic course of the financial crisis in the euro area than in relatively sheltered Czech economy.
- The trajectories of the Taylor rule parameters also show interesting differences in the behaviour of the ECB and CNB.

うして ふゆう ふほう ふほう うらつ

Contents	Motivation	Nonlinearity	Model	Empirical results	Conclusion
Referenc	es				

- Haug, A. J.: A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and Non-Gaussian Processes. Mitre Technical Report, 2005.
- Shaari, M. H.: Analysing Bank Negara Malaysia's Behaviour in Formulating Monetary Policy: An Empirical Approach. Doctoral thesis, College of Business and Economics, The Australian National University, 2008.
- Van Der Merwe, R., Doucet, A., De Freitas, N., and Wan, E.: *The Unscented Particle Filter*. CUED Technical Report 380, Cambridge University Engineering Department, 2000.
- Vašíček, O., Tonner, J., and Polanský, J.: Parameter Drifting in a DSGE Model Estimated on Czech Data. Czech Journal of Economics and Finance, vol. 61, no. 5, UK FSV, Praha, 2011, 510–524.
- Yano, K.: Time-varying Analysis of Dynamic Stochastic General Equilibrium Models Based on Sequential Monte Carlo Methods.
 ESRI Discussion Paper No. 231. Economic and Social Research Institute, 2010.

Contents	Motivation	Nonlinearity	Model	Empirical results	Conclusion

Thank you for your attention!

tvrz@mail.muni.cz

◆□ > < 個 > < E > < E > E の < @</p>