

ASPECTS OF FORECASTING OF THE WIND FARM POWER OUTPUT -PRACTICAL EXPERIENCE

June 2014

Ales Jirk Trading

WIND POWER PLANTS. LARGEST EUROPEAN ONSHORE WIND FARM ...

- Group of wind turbines in one area
- Intermittent renewable resource X conventional sources

CEZ Fantanele & Cogealac wind farm

- Located in South East Romania, 15 km from Black sea coast
- Built for 2 years, finished in December 2012
- 240 turbines / 600 MW installed capacity
- Seasonal pattern of utilization (20 30 %)
- Size 12 x 6 km

PHYSICS OF WIND ...

- Wind speed is a fundamental atmospheric variable.
- Velocity distribution often matches the Weibull shape defined as (k... shape parameter, λ...scale parameter):

$$f(x;\lambda;k) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}; x \ge 0$$

- Extract kinetic energy from the flow of wind into electrical power.
- Wind power is defined as ~ v³

CEZ GROUP

METEOROLOGICAL SERVICE IS A MUST FOR WIND FARM OPERATORS

General meteorological predictions

- Temperatures and humidity icing
- Storms and lightning
- Low and extreme wind speeds

Wind power output

- Electricity cannot be stored
- Day-ahead and intraday nomination
- Hedging
- Assess of the wind farm

Scheme of forecasting the power output

DEPENDENCE OF PREDICTED WIND SPEED ON POWER OUTPUT IS NON-TRIVIAL

QUANTILE REGRESSION HELPS FIND OUT PROBABILITIES OF THE OUTPUT

- Point forecast X distribution forecast: quantile regression just one of the techniques
- Koenker, R., and Bassett, G. W. Regression Quantiles, Econometrica, 1978, 46, 33-50.
- Parameter estimation for the linear function is the problem of linear optimization

INTRADAY ALLOWS HIGHER ACCURACY WITH USAGE OF REAL DATA

- Output prediction has its own limits due to numerical models accuracy!
- Autoregression might help improving prediction on short time interval
- Usage of the Intraday AR forecast with respect to trading windows

CHALLENGES WITH MODEL SPECIFICATION

Periodical variables:

- Problem with singularity
- Transition between Cartesian and polar coordinates
- Define wind speed and wind direction in Cartesian coordinates v₁ and v₂:

 $v_1 = \overline{v} \cos \varphi$; $v_2 = \overline{v} \sin \varphi$

Decrease number of variables:

- Principal component analyses
- PCA "squeezes" as much as possible information into the first principal components
- E.g. predicted wind speeds from several numerical models, 1st principal component contains 96% of variability

CEZ GROUP

CEZ GROUP

CHALLENGES WITH OPERATING THE MODEL

Icing

Often followed by huge wind speeds.

Unavailability

 Discrepancy between real and forecasted availability can destroy forecast...

Speed of data availability

 Earlier data can improve accuracy but in physical limits.

