Systems for Algorithmic Trading in FPGA

Milan Dvorak dvorak@invea.com Petr Kastovsky kastovsky@invea.com

Company

- Czech university spin-off company
- FPGA team formed in 2000
- Company established in 2007
- 40+ employees
- Key focus
 - Hardware acceleration
 - Electronic trading
 - FPGA solutions
 - Network monitoring and security

INVEATECH

Gartner

Research

Motivation

Evolution of trading

- Open out cry
- Electronic
- High frequency
- Ultra low latency
- First come first serve

High Performance Computing

- Derivatives trading
- Monte Carlo simulations

FPGA technology

Е плеатесн

Programmable hardware

- Flexibility of software
- Performance of hardware

Key features

- Field programmable
- Massive parallelism
- Deterministic
- Low latency (sub us)

Drawbacks

- Hardware designer expertise required
- Time to market longer compared to software

FPGA cards

- NIC (Network Interface Card) + FPGA chip
- Plugged in to a commodity box
- Provided as a whole solution
- 1G/10G/40G/100G interfaces

How can financial applications and trading systems benefit from the FPGA technology?

Content aware filtering EInvertech

- Message Filtering
 - According to message type
- Symbol filtering
 - According to symbol ID
- Data Distribution
 - Multiple CPU cores, multiple network interfaces
- Data decoding&normalization
 - Unified message format
- Book handling
 - Convert order updates to price level updates
- Reduced CPU load on machines

Fast order execution

• Complex price computation in SW (Options pricing)

- Fast order execution engine in FPGA
 - SW feeds current desired prices to the FPGA
 - FPGA sends order as soon as matching price is on the book
- Complete tick-to-trade in hardware
- Wire-to-wire sub-microsecond latency

Parallel evaluation

- Goal: evaluate all derivatives upon change in underlying price (stock → options)
- In SW sequential task (few cpu cores)
- In FPGA hundreds of symbols evaluated in parallel

INVEATECH

FPGA acceleration

• FPGA can be used to accelerate generic computation

- Monte Carlo simulation:
 - 1. Load desired function to the FPGA
 - 2. Let FPGA evaluate hundreds of points in parallel
 - 3. Get the results
- Parallel execution faster than CPU
- Lower power consumption

How to program the FPGA with user-defined function?

FPGA programming

- SW code HLL (High Level Language)
 - C/C++, Java, Python ...
 - Flexible, easy to use
- HW code HDL (Hardware Description Language)

- VHDL, Verilog
- Difficult to learn, longer time-to-market

FPGA programming

- HLS High Level synthesis
 - Use HLL to write code for FPGA
 - Convert C/C++ to VHDL
 - Several commercial tools
- MathWorks tool chain
 - Convert your Matlab function to FPGA design
 - Simulink, Fixed-Point Designer, HDL Coder and HDL Verifier

- Complete solution with FPGA
 - FPGA is abstracted from the user
 - SW API calls to configure&use the FPGA

TradeCOPE

- All-FPGA trading solution
 - Lowest latency possible
 - Easy-to-use
- Deliverables
 - FPGA card, box
 - Software API, firmware framework
- Complete tick-to-trade processing
- User defined trading strategy
 - MathWorks tools or HLS

Summary

- FPGA
 - Flexible, high performance, deterministic low latency
- Use cases of FPGA + algorithmic trading
 - Content aware filtering
 - Low-latency order execution
 - Highly parallel symbol evaluation (options)
 - Computation acceleration (Monte Carlo)
- FPGA programmability
 - HLS High level synthesis (C/C++ \rightarrow FPGA)
 - MathWorks (Matlab \rightarrow FPGA)
 - Whole solution (TradeCOPE)

High-Speed Networking Technology Partner

Milan Dvořák dvorak@invea.com

INVEA-TECH a.s. U Vodárny 2965/2 616 00 Brno, Czech Republic www.invea.com

