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Motivation

Stock and Watson (2011)

The premise of dynamic factor models (DFM) is that a few latent
dynamic factors ft drive the comovements of high-dimensional
vector of time-series variables Xt , which is also affected by a vector
of disturbances εt :

Xt =
∑
i

Λi ft−i︸ ︷︷ ︸
≡χt= common component

+ εt︸︷︷︸
idiosyncratic part

.



Applications

Dynamic factor models have a wide range of applications:

I Near-term forecasting

I Analysis of macroeconomic comovements

I Analysis of commodity markets

I Finance: yield curve

I and more ....

Stock and Watson (2011) distinguish several generations of DFM



First generation

First generation DFM have been estimated in time-domain using
MLE

Xt = Λ0ft + et

ft = Ψ1ft−1 + . . .Ψj ft−j + Gηt ,

By the parametric specification of distribution for ηt (Gaussian iid
errors) and et (usually Gaussian stationary process), the model can
be converted to a state space form and the likelihood function
evaluated using the Kalman filter:

I static nature:
I no lead-lag relation among Xt

I not always plausible, e.g. the unemployment cycles lags the
output cycles in most advanced countries (Br̊uha & Polanský,
2014; Andrle, Br̊uha, Solmaz 2013, 2014).



Second generations /a

Non-parametric ‘averaging’ errors:

I (Generalized) principal component estimation

I min
f1,...,fT ,Λ

T−1
∑T

t=1(Xt − Λft)Σ−1
e (Xt − Λft)

′,

I Leads to the eigenvalue decomposition of Σ
−1/2
e Σ̂xΣ

−1/2
e ,

I Weak assumptions on dgp for ft
I Standard PCA if Σe is replaced by the identity matrix (Bai &

Ng, 2002, 2003)
I Hard to estimate precisely Σe

I Forni, Halli, Lippi and Reichlin (2005) suggest estimating it by
non-parametric spectral density (a dynamic model)

I Again static model, even if Σe estimated from a dynamic
model



Second generations /b

Dynamic principal component analysis:

I Based on the frequency-domain PCA by Brillinger (1964)

I Introduced to empirical economics by Forni, Halli, Lippi and
Reichlin (2000)

I A non-parametric method:
I weak assumption on data generating process (rational spectral

density),
I the spectral density can be estimated by a non-parametric

(Bartlett) approach.

I The spectral density is subjected to PCA and then transformed
back to time-domain filter using a two-sided linear filter



Second generations /c

The transformation to time domain leads to a two-sided filter:

χt =
K∑

i=−K
ωkXt−k ,

where χt is the common component (driven by the common
factors), and ωk are filtered weights.

Implications:
I Forni, Halli, Lippi and Reichlin (2000) call it ‘two-sided’ DFM

I versus the ‘static’ one-sided DFM based on generalized PCA
by Forni, Halli, Lippi and Reichlin (2005) outlined above

I The common component χt cannot be estimated at the
beginning and at the end of the sample

I Problems for many applications (real-time data)

I My contribution: how to estimate the common
component on the whole sample.



Third generation – state space models

They can be applied to a variety of parametric models using
sophisticated tools of modern econometrics, such as

I the EM algorithm (Bańbura & Modugno, 2010),

I the Gibbs sampler (Bai & Wang, 2012),

I the two-step estimation (Doz, Giannone and Reichlin, 2006).

These models:

I are truly dynamic (unlike the first generations and one-sided
PCA),

I can accommodate various issues (missing data, asynchronous
data release, ...),

I the common component estimated on the whole sample,

I but are parametric.



Quest

Quest
I Is it possible to propose:

I a genuinely dynamic model,
I based on non-parametric (frequency-domain) approach,
I with the common component estimable on the whole sample,
I and possibly accommodating other issues, such as

asynchronous data releases?

Yes

... and this is my contribution.



How is it done?

Start with the common component representation:

Xt = χt︸︷︷︸
≡
∑

i Λi ft−i

+εt ,

Now consider the linear projection of χt on XS ≡ {Xs}s∈S, where
S is an arbitrary index set. The linear projection is given as:

E∗ [χt |XS ] = E
[
χtX

T
S

]
E
[
XSX

T
S

]−1
XS ,

Matrices such as E
[
χtX

T
S
]

can be derived from the spectral
density of the data:

I as in ‘second-generation’ DFM (DPCA)

I hence, frequency-domain DPCA meets the linear regression.



How to get the common component on the whole sample?

The adaptation of the index set S:

I The index set can be adapted to the beginning and end of the
sample (hence, real time data).

I assume you wish to get E∗ [χt |{Xt−1,Xt ,Xt+1}]
I trivial in the middle of the sample,
I replace it by E∗ [χT |{XT−1,XT}] at the end of the sample!

I The index set can be adapted for missing data (e.g. due to
asynchronous data release).



Finite-sample properties

The estimation of covariance matrices E
[
χtX

T
S
]

and E
[
XSX

T
S
]

can be imprecise in finite samples.

How to overcome this complication:

I Use robust regression in computing the projection E∗ [χt |XS ]!

I I use a ridge regression with good properties.



Matlab codes

I build a set of Matlab routines that can be used to run a set of
non-parametric DFM

sfactor.m computes the static PCA

dfactor.m computes the ‘two-sided’ version of the DPCA

I for particular choices, equivalent to the
‘one-sided’ DFM representation,

tfactor.m implements the approach outlined in this
presentation.

I plan to put these routines on Matlab Exchange File soon



A simulation study /1

Forni, Halli, Lippi and Reichlin (2005) proposed four computational
experiments with DFM.

M1 read as

xit = λi ft + αciεit with (1− .5L)ft = ut ,

and the shocks εit , ut , λi are independent standard normal
variables, ci ∼ U[0.1 1.1] and α is calibrated so that the average
idiosyncratic-common variance ratio is 1.

M2 reads as:

xit =
3∑

k=0

aiku1,t−k +
3∑

k=0

biku2,t−k + αciεit ,

where aik , bik and the shocks are standard normal variables and ci
and α are as above.



A simulation study /2

M3 reads as:

xit =

li+2∑
k=li

λk−li ,i ft−k + ξit ,

where (1− .5L)ft = ut , ξit = αci (εit + εi+1t), ut and εit are
independent standardized normal random variables,

li =


0 for i ≤ m
1 for i ∈ {m + 1, . . . , 2m}
2 for i ≥ 2m + 1

M4 is the same as M3, but without cross-sectional dependence
(ξit = αciεit).



Model M1 – known covariance matrices

Marginal efficiency gains for this model
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Model M1 – unknown covariance matrices

Gains disappear if covariance matrices are to be estimated
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Model M3 – known covariance matrices

Large efficiency gains at the beginning of the sample
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Model M3 – unknown covariance matrices

The efficiency gains survive even in small samples (T=50, N=20)
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Disclaimer

The tool presented here was partly developed under the CNB
research project B1/10. Nevertheless, the views expressed here are
mine and do not necessarily reflect the position of the Czech
National Bank.

I thank to Michal Andrle for comments and encouragement.
However, any errors are solely my own responsibility.



Concluding slide

Thank you for your attention.

jan.bruha@cnb.cz
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