Dynamic Factor Models in Real Time: A New Approach and an Implementation in Matlab

Jan Brůha

Moderní nástroje pro finanční analýzu a modelování Praha, 5 June 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline of the presentation

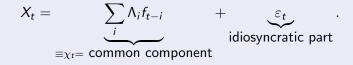
- 1. Motivation
- 2. My contribution
- 3. Implementation in Matlab
 - Simulation Study

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation

Stock and Watson (2011)

The premise of dynamic factor models (DFM) is that a few latent dynamic factors f_t drive the comovements of high-dimensional vector of time-series variables X_t , which is also affected by a vector of disturbances ε_t :



Applications

Dynamic factor models have a wide range of applications:

- Near-term forecasting
- Analysis of macroeconomic comovements
- Analysis of commodity markets
- Finance: yield curve
- and more

Stock and Watson (2011) distinguish several generations of DFM

First generation

First generation DFM have been estimated in time-domain using MLE

$$X_t = \Lambda_0 f_t + e_t$$

$$f_t = \Psi_1 f_{t-1} + \dots \Psi_j f_{t-j} + G \eta_t.$$

By the **parametric** specification of distribution for η_t (Gaussian iid errors) and e_t (usually Gaussian stationary process), the model can be converted to a state space form and the likelihood function evaluated using the Kalman filter:

- static nature:
 - no lead-lag relation among X_t
 - not always plausible, e.g. the unemployment cycles lags the output cycles in most advanced countries (Brůha & Polanský, 2014; Andrle, Brůha, Solmaz 2013, 2014).

Second generations /a

Non-parametric 'averaging' errors:

(Generalized) principal component estimation

$$\min_{f_1,\ldots,f_T,\Lambda} T^{-1} \sum_{t=1}^T (X_t - \Lambda f_t) \Sigma_e^{-1} (X_t - \Lambda f_t)',$$

- Leads to the eigenvalue decomposition of $\sum_{e}^{-1/2} \widehat{\sum_{x}} \sum_{e}^{-1/2}$,
- Weak assumptions on dgp for f_t
- Standard PCA if Σ_e is replaced by the identity matrix (Bai & Ng, 2002, 2003)
- Hard to estimate precisely Σ_e
 - Forni, Halli, Lippi and Reichlin (2005) suggest estimating it by non-parametric spectral density (a dynamic model)
- Again static model, even if Σ_e estimated from a dynamic model

Second generations /b

Dynamic principal component analysis:

- ► Based on the frequency-domain PCA by Brillinger (1964)
- Introduced to empirical economics by Forni, Halli, Lippi and Reichlin (2000)
- A non-parametric method:
 - weak assumption on data generating process (rational spectral density),
 - the spectral density can be estimated by a non-parametric (Bartlett) approach.
- The spectral density is subjected to PCA and then transformed back to time-domain filter using a two-sided linear filter

Second generations /c

The transformation to time domain leads to a two-sided filter:

$$\chi_t = \sum_{i=-K}^{K} \omega_k X_{t-k},$$

where χ_t is the common component (driven by the common factors), and ω_k are filtered weights.

Implications:

- Forni, Halli, Lippi and Reichlin (2000) call it 'two-sided' DFM
 - versus the 'static' one-sided DFM based on generalized PCA by Forni, Halli, Lippi and Reichlin (2005) outlined above
- The common component \(\chi_t\) cannot be estimated at the beginning and at the end of the sample
- Problems for many applications (real-time data)
- My contribution: how to estimate the common component on the whole sample.

Third generation – state space models

They can be applied to a variety of **parametric** models using sophisticated tools of modern econometrics, such as

- the EM algorithm (Bańbura & Modugno, 2010),
- the Gibbs sampler (Bai & Wang, 2012),
- ▶ the two-step estimation (Doz, Giannone and Reichlin, 2006).

These models:

- are truly dynamic (unlike the first generations and one-sided PCA),
- can accommodate various issues (missing data, asynchronous data release, ...),

- the common component estimated on the whole sample,
- but are parametric.

Quest

Quest

- Is it possible to propose:
 - > a genuinely dynamic model,
 - based on non-parametric (frequency-domain) approach,
 - with the common component estimable on the whole sample,

and possibly accommodating other issues, such as asynchronous data releases?

Yes

... and this is my contribution.

How is it done?

Start with the common component representation:

$$X_t = \underbrace{\chi_t}_{\equiv \sum_i \Lambda_i f_{t-i}} + \varepsilon_t,$$

Now consider the linear projection of χ_t on $X_S \equiv \{X_s\}_{s \in S}$, where S is an *arbitrary* index set. The linear projection is given as:

$$\mathbb{E}^*\left[\chi_t | X_{\mathcal{S}}\right] = \mathbb{E}\left[\chi_t X_{\mathcal{S}}^{\mathcal{T}}\right] \mathbb{E}\left[X_{\mathcal{S}} X_{\mathcal{S}}^{\mathcal{T}}\right]^{-1} X_{\mathcal{S}},$$

Matrices such as $\mathbb{E}\left[\chi_t X_S^T\right]$ can be derived from the spectral density of the data:

- as in 'second-generation' DFM (DPCA)
- hence, frequency-domain DPCA meets the linear regression.

How to get the common component on the whole sample?

The adaptation of the index set S:

- The index set can be adapted to the beginning and end of the sample (hence, real time data).
 - assume you wish to get $\mathbb{E}^* [\chi_t | \{X_{t-1}, X_t, X_{t+1}\}]$
 - trivial in the middle of the sample,
 - replace it by $\mathbb{E}^* [\chi_T | \{X_{T-1}, X_T\}]$ at the end of the sample!

The index set can be adapted for missing data (e.g. due to asynchronous data release). The estimation of covariance matrices $\mathbb{E}\left[\chi_t X_{\mathcal{S}}^{\mathcal{T}}\right]$ and $\mathbb{E}\left[X_{\mathcal{S}} X_{\mathcal{S}}^{\mathcal{T}}\right]$ can be imprecise in finite samples.

How to overcome this complication:

• Use robust regression in computing the projection $\mathbb{E}^*[\chi_t|X_{\mathcal{S}}]!$

I use a ridge regression with good properties.

Matlab codes

I build a set of Matlab routines that can be used to run a set of non-parametric DFM

I plan to put these routines on Matlab Exchange File soon

A simulation study /1

Forni, Halli, Lippi and Reichlin (2005) proposed four computational experiments with DFM.

M1 read as

$$x_{it} = \lambda_i f_t + \alpha c_i \epsilon_{it}$$
 with $(1 - .5L) f_t = u_t$,

and the shocks ϵ_{it} , u_t , λ_i are independent standard normal variables, $c_i \sim \mathcal{U}_{[0.1\ 1.1]}$ and α is calibrated so that the average idiosyncratic-common variance ratio is 1.

M2 reads as:

$$x_{it} = \sum_{k=0}^{3} a_{ik} u_{1,t-k} + \sum_{k=0}^{3} b_{ik} u_{2,t-k} + \alpha c_i \epsilon_{it},$$

where a_{ik} , b_{ik} and the shocks are standard normal variables and c_i and α are as above.

A simulation study /2

M3 reads as:

$$x_{it} = \sum_{k=l_i}^{l_i+2} \lambda_{k-l_i,i} f_{t-k} + \xi_{it},$$

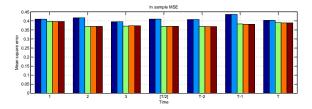
where $(1 - .5L)f_t = u_t$, $\xi_{it} = \alpha c_i(\varepsilon_{it} + \varepsilon_{i+1t})$, u_t and ε_{it} are independent standardized normal random variables,

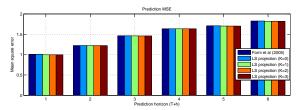
$$I_i = \begin{cases} 0 & \text{for} & i \le m \\ 1 & \text{for} & i \in \{m+1, \dots, 2m\} \\ 2 & \text{for} & i \ge 2m+1 \end{cases}$$

M4 is the same as **M3**, but without cross-sectional dependence $(\xi_{it} = \alpha c_i \varepsilon_{it})$.

Model M1 – known covariance matrices

Marginal efficiency gains for this model

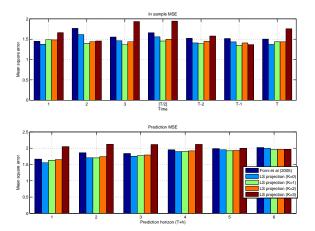




◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Model M1 – unknown covariance matrices

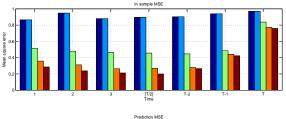
Gains disappear if covariance matrices are to be estimated

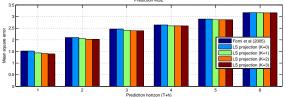


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Model M3 – known covariance matrices

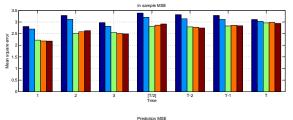
Large efficiency gains at the beginning of the sample

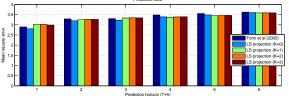




Model M3 – unknown covariance matrices

The efficiency gains survive even in small samples (T=50, N=20)





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Disclaimer

The tool presented here was partly developed under the CNB research project B1/10. Nevertheless, the views expressed here are mine and do not necessarily reflect the position of the Czech National Bank.

I thank to Michal Andrle for comments and encouragement. However, any errors are solely my own responsibility.

Concluding slide

Thank you for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

jan.bruha@cnb.cz