

Modeling Selected Energy Assets – in the Activities of an Energy Trading Unit

29th of May 2012, Prague

Bohdan Vrazda, Trading, ČEZ, a. s.

Selected Assets

Standard EX and OTC products (power, gas, oil, coal, EUA, etc.)

Transmission and transport capacities

Real power plants and gas storages

> Structured products/virtual assets

Motivation/Activities Operating the assets E.g. power plants dispatch/gas storages utilization Hedging and managing the value of the asset Risk management Proprietary trading & market forecast Getting the insights on market fundamentals Structured products Pricing and managing the value

Gas storage: Set up of the problem

Optimization of the gas storage utilization

- Maximization of the value using the gas storage and marketing the gas
- Given the all technical and non-technical constraints

List of potential constraints

- Working gas volume (WGV) total capacity of the storage
- Initial gas volume, terminal gas volume
- Maximum/minimum injection rate (IR) as a function of the actual storage utilization

Maximum/minimum withdrawal rate (WR) – as a function of the actual storage utilization

- Minimum/maximum gas storage utilization across the time
- Costs:
 - Injection costs
 - Withdrawal costs
 - Costs over the gas volume in the storage
- Etc.

Gas storage: Term sheet example

Gas storage specification

Area: NCG
Period: 1.4.2012 – 31.3.2013
Working gas volume: 500 000 MWh
Initial gas volume = terminal gas volume = 0
Injection and withdrawal rates as defined
No additional costs on top of the price

Gas storage: Intrinsic value of 4.7 EUR/MWh as for the example

Dynamic Programming approach (DP)

- Dynamic programming breaks down complex problem into simpler sub-problems. DP solves subproblems, and doing this recursively the overall solution is revealed
- DP problem.
 - 1. Define the world you live in terms of "states" for every point of the time (e.g. discrete levels of the gas storage)
 - 2. Define what state transitions are allowed
 - 3. Work backwards through time and store per state and time the 'continues values'
 - 4. Select the optimal path from state to state

Advantages:

- It can very quickly solve the complex problems faster than other methods
- Hence, the DP is often combined with stochastic approach

Disadvantages

- It struggles to incorporate time overlapping constraints (number of starts, fuel take-or-pay)
- It needs to be very much tailor-made, difficult to have as module system

K(t) = K(x(t), a(t), Z(t))

$$V_t(x_t) = \max_{a_t} (K(x_t, a_t, Z_t) + \beta V_{t+1}(L(x_t, a_t), Z_t))$$

- V(t) value at time t
- a(t) set of control variables or actions (e.g. inject/withdraw) at time
- x(t) set of state variables at time t
- Z(t) set of other independent variables at time (e.g. gas price)
- K(t) cash flow at time t

Power plant: Set up of the problem

Dispatch optimization

Can be formulated either as cost minimization (central dispatch) or gross margin maximization (market approach) – as the objective function
 Given the all technical and non-technical constraints

List of potential constraints

Generation capacity and efficiency curves for particular units and across time

- Min/max generation capacity Pmin a Pmax
- Heat (fuel) efficiency, consumption of EOH

Regime switching: time and additional variable costs and EOH associated with regime switching

- Cold, warm and hot starts, Pmin and Pmax for particular units in operation
- Minimum on/off/stay time, minimum ramp-up or cool-down time
- Associated fuel costs, EOH or other costs
- Operational constraint: e.g. number of starts
- Fuel constraints: e.g. take-or-pay obligation and/or flexibility, limit on emissions
- Load constraints: e.g. power must-run
- Maintenance schedule
- Ancillary services
- Etc.

Formulation of LP or MILP

 $\min c^T \times x$ $A \times x \le b$ $x \ge 0$

,if some x are integer than we have MILP

- Dispatch optimization can be either simplified into a linear problem, or many non-linear constraints can be LINEARIZED. This however at the cost of increasing complexity (dimensionality) of the problem.
- LP and MILP are implemented with many solvers

Advantages of LP or MILP

- Efficient treatment of time-overlapping constraints (e.g. fuel take-or-pay, limit on the number of starts per period)
- Very standard formulation of the problem, hence possibility to built the "module solution"
- Many commercial/free solvers available

Disadvantages of LP or MILP

 Additional constraints increases the complexity (dimensionality) of the problem with exponential rate -> this is than reflected in the computational time

Example of formulation of a very simple dispatch problem within the LP framework

illustrative

Gas power plant simplified within LP

Focus on CSS, gas contract and virtual storageContracted gas (CG)

- Buy & burn, buy & inject, withdraw & burn
 NCG
 - Buy & burn, buy & inject, withdraw & burn

$$c = \begin{bmatrix} css1\\ inj1\\ with1\\ wgv1\\ css2\\ inj2\\ with2\\ wgv2 \end{bmatrix} \quad A = \begin{bmatrix} A1\\ A2\\ A3\\ ...\\ ...\\ A10\\ A11\\ A12 \end{bmatrix} \quad b = \begin{bmatrix} b1\\ b2\\ b3\\ ...\\ ...\\ b10\\ b11\\ b12 \end{bmatrix}$$

Variables -css1:clean spark spread for CG -inj1: injection of CG -with1: withdrawal of CG -wgv1: CG in the storage -... -A1: gas contract, DCQ COMB -A2: gas contract, ACQ COMB -A3: gas contract, DCQ AL MAX -A4: gas contract, ACQ AL MAX -A5: gas contract, ACQ AL MIN -A6: gas contract, DCQ AM MAX -A7: upper limit on capacity (in MW) -A8: storage, upper limit on daily withdrawal -A9: storage, implicit CG storage -A10: storage, implicit NCG storage -A11: storage, upper limit on total storage - . . .

Lessons learnt regarding some alternative techniques

Linear programming	LP	Linear programming	 Fast and easy to implement for truly linear and simple problems Quickly fails in dealing with non-linear constraints More variables bring the curse of dimensionality, at the costs of computational time 	Deterministic (mostly)
	MILP	Mixed integer linear programming	 Helps to absorb specific constraints and linearize some non-convex constraints More variables bring the curse of dimensionality, at the costs of computational time 	
Dynamic programming	DP	Dynamic programming	 Efficiently solves problems with many variables and various constraints Requires the breaking down of the complex problem into sub-problems As a consequence, there are limitation to incorporate time overlapping constraints 	
	SDP	Stochastic dynamic programming	 Allows incorporation of the probabilistic view on the problem This adds another dimension into the optimal solution - robustness 	Stochastic

THANK YOU