Modelling Czech and Slovak labour markets: A DSGE model with labour frictions

Daniel Němec

Faculty of Economics and Administrations

Masaryk University

Brno, Czech Republic

nemecd@econ.muni.cz

ESF MU (Brno)

Search and matching DSGE model

Humusoft, May 25, 2012 1 / 44

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Content

2 Estimation results

2

<ロト < 四ト < 三ト < 三ト

Motivation

- DSGE models with labour market rigidities:
 - models with wage bargaining mechanism,
 - models with "search and matching" functions.
- An alternative to the perfectly competitive Walrasian labour market model \rightarrow integration into standard macroeconomic models.
- \bullet Description of employment flows in the economy \rightarrow influence on business cycles.
- Revealing some structural properties of the labour market.

4 1 1 4 1 1 1

Labour markets properties

- Slovak labour market:
 - wages relative flexible,
 - overall wage flexibility only poorly influenced by the institutional arrangements.
- Czech labour market:
 - losing its flexibility due to high reservation wage and due to the obstacles connected with the necessary layoffs,
 - decreasing flows of workers among industries and problem with long-term unemloyment.

2 Estimation results

3 Model evaluation

2

イロト イヨト イヨト イヨト

Introduction

- Log-linear version of Lubik (2009): *Estimating a Search and Matching Model of the Aggregate Labor Market.*
- Simple search and matching model: labour market subject to frictions.
- Time-consuming search process for workers and firms.
- Cost of finding a job/worker \rightarrow shared rents.
- Wages as an outcome of a bargaining process.
- Simple general equilibrium framework \times key labour market features.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Households

• Intertemporal utility of a representative household:

$$E_t \sum_{j=1}^{\infty} \beta^{j-t} \left[\frac{C_j^{1-\sigma} - 1}{1-\sigma} - \chi_j n_j \right],$$

- C aggregate consumption, n ∈ [0, 1] fraction of employed household members (determined in the matching market), β ∈ (0, 1) discount factor, σ ≥ 0 coefficient of relative risk aversion, χ_t exogenous stochastic process (labour shock).
- Budget constraint:

$$C_t + T_t = w_t n_t + (1 - n_t)b + \Pi_t,$$

• *b* unemployment benefits (financed by a lump-sum tax T_t), Π_t profits from ownership of the firms, *w* wage.

ESF MU (Brno)

イロト 不得下 イヨト イヨト 二日

Households (cont.)

• No explicit labour supply (outcome of the matching process) \Rightarrow F.O.C.:

1

$$C_t^{-\sigma} = \lambda_t,$$

• λ_t Lagrange multiplier on the budget constraint.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Labour Market

Search frictions:

$$m(u_t, v_t) = \mu_t u_t^{\xi} \nu_t^{1-\xi},$$

- u_t unemployed job seekers, ν_t vacancies, $m(u_t, \nu_t)$ matching rate, 0 < ξ < 1 match elasticity of the unemployed, μ_t efficiency of the matching process.
- Aggregate probability of filling a vacancy:

$$q(\theta_t) = m(u_t, \nu_t)/\nu_t,$$

• $\theta_t = \frac{\nu_t}{u_t}$ labour market tightness.

イロト イポト イヨト イヨト 二日

Labour Market (cont.)

- Assumption: one period for new matches to be productive; old and new matches destroyed at a constant rate.
- Evolution of employment $(n_t = 1 u_t)$:

$$n_{t} = (1 - \rho) \left[n_{t-1} + \nu_{t-1} q(\theta_{t-1}) \right],$$

• $0 < \rho < 1$ constant separation rate (inflows into unemployment).

イロト 不得下 イヨト イヨト 二日

Firms

- Monopolistic competition (deviation from standard S&M framework).
- Demand function of a firm:

$$y_t = \left(\frac{p_t}{P_t}\right)^{-1-\epsilon} Y_t,$$

- y_t firm's production (its demand), Y_t aggregate output, p_t price set by the firm, P_t aggregate price index, ϵ demand elasticity.
- Production function:

$$y_t = A_t n_t^{\alpha},$$

• A_t aggregate technology process, $0 < \alpha \le 1$ curvature in production (\Rightarrow fixed and firm-specific capital).

Firms (cont.)

• Maximizing intertemporal profit function (n_t, v_t, p_t) :

$$E_t \sum_{j=1}^{\infty} \beta^{j-t} \lambda_j \left[p_j \left(\frac{p_j}{P_j} \right)^{-(1+\epsilon)} Y_j - w_j n_j - \frac{\kappa}{\psi} \nu_j^{\psi} \right],$$

- subject to the employment accumulation equation and production function equation.
- Profits evaluated in terms of marginal utility λ_i .
- Cost of vacancy posting $\frac{\kappa}{\psi}v_t^{\psi}$, $\kappa > 0$, $\psi > 0$ ($0 < \psi < 1$, posting costs exhibit decreasing returns, $\psi > 1$ costs are increasing, $\psi = 1$ fixed vacancy costs).

12 / 44

Firms (cont.)

• First-order conditions:

$$\tau_t = \alpha \frac{y_t}{n_t} \frac{\epsilon}{1+\epsilon} - w_t + (1-\rho)E_t\beta_{t+1}\tau_{t+1},$$

$$\kappa \nu_t^{\psi-1} = (1-\rho)q(\theta_t)E_t\beta_{t+1}\tau_{t+1},$$

 β_{t+1} = β^λ_{t+1}/λ_t stochastic discount factor, τ_t Lagrange multiplier for employment constraint (current-period marginal value of a job).

Wage Determination

 Bilateral bargaining process → wage rates to maximize the joint surplus from employment relationship:

$$S_t \equiv \left(rac{1}{\lambda_t}rac{\partial \mathcal{W}_t(n_t)}{\partial n_t}
ight)^\eta \left(rac{\partial \mathcal{J}_t(n_t)}{\partial n_t}
ight)^{1-\eta},$$

- $\eta \in [0, 1]$ bargaining power of workers, $\frac{\partial W_t(n_t)}{\partial n_t}$ marginal value of a worker to the household's welfare, $\frac{\partial \mathcal{J}_t(n_t)}{\partial n_t}$ marginal value of a worker to the firm.
- $\frac{\partial \mathcal{J}_t(n_t)}{\partial n_t} = \tau_t$ (F.O.C. for the firms with respect to the employment).

Wage Determination (cont.)

• Recursive representation for $\frac{\partial W_t(n_t)}{\partial n_t}$:

$$\frac{\partial \mathcal{W}_t(n_t)}{\partial n_t} = \lambda_t w_t - \lambda_t b - \chi_t + \beta E_t \frac{\partial \mathcal{W}_{t+1}(n_{t+1})}{\partial n_{t+1}} \frac{\partial n_{t+1}}{\partial n_t}$$

• Using employment equation:

$$\frac{\partial n_{t+1}}{\partial n_t} = (1-\rho)[1-\theta_t q(\theta_t)].$$

• Real payments valued at the marginal utility λ_t .

٠

Wage Determination (cont.)

• Standard optimality condition for wages:

$$(1-\eta)\frac{1}{\lambda_t}\frac{\partial \mathcal{W}_t(n_t)}{\partial n_t} = \eta \frac{\partial \mathcal{J}_t(n_t)}{\partial n_t}.$$

• After some intuitive algebra:

$$w_t = \eta \left[\alpha \frac{y_t}{n_t} \frac{\epsilon}{1+\epsilon} + \kappa \nu_t^{\psi-1} \theta_t \right] + (1-\eta) \left[b + \chi_t C_t^{\sigma} \right].$$

ESF MU (Brno)

3

< □ > < □ > < □ > < □ > < □ > < □ >

Closing the model

• Lump-sum taxes T + balanced budget:

$$T_t = (1 - n_t)b.$$

• Social resource constraint:

$$C_t + \frac{\kappa}{\psi} \nu_t^{\psi} = Y_t.$$

• Law of motion for aggregate employment:

$$n_t = (1 - \rho) \left[n_{t-1} + \mu_{t-1} u_{t-1}^{\xi} \nu_{t-1}^{1-\xi} \right].$$

- Shocks: technology A_t , labour χ_t , matching $\mu_t \rightarrow$ independent AR(1) processes (in logs) with coefficients ρ_i , $i \in (A, \xi, \mu)$.
- Innovations $\epsilon_t^i \sim N(0, \sigma_i^2)$.

2 Estimation results

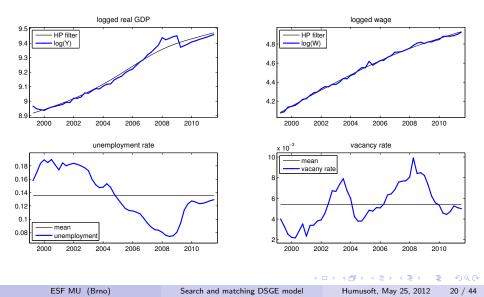
3 Model evaluation

Search and matching DSGE model

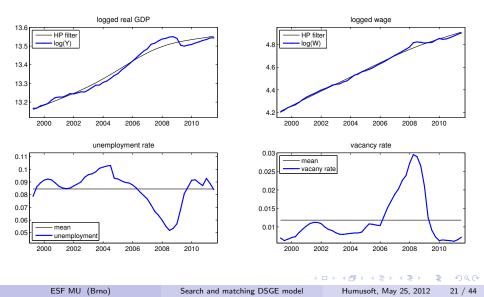
Humusoft, May 25, 2012 18 / 44

æ

イロト イヨト イヨト イヨト


Data and estimation techniques

• Quarterly data: 1st quarter 1999 – 4th quarter 2010:


- GDP at purchaser prices, constant prices 2000, s.a., CZSO, millions of CZK;
- GDP at purchaser prices, constant prices 2000, s.a., SOSR, millions of EUR;
- Index of hourly earnings (manufacturing), 2005=100, s.a., OECD;
- Registered unemployment rate, s.a., OECD;
- Unfilled job vacancies, level (transformed to ratio of unfilled vacancies to labour force), s.a., OECD and SAFSR.
- Bayesian techniques combined with Kalman filtering procedures (all computations performed using Dynare toolbox for Matlab).

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

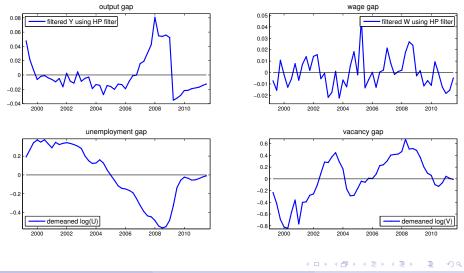
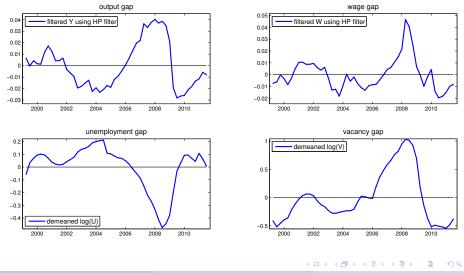

Figure – source data SVK

Figure – source data CZE

Figure – model data SVK



ESF MU (Brno)

Search and matching DSGE model

Humusoft, May 25, 2012 22 / 44

Figure – model data CZE

ESF MU (Brno)

Search and matching DSGE model

Humusoft, May 25, 2012 23 / 44

Parameters description and prior densities

Description	Parameter	Density	Pric	rs SVK	Priors CZE	
			Mean	Std. Dev	Mean	Std. Dev
Discount factor	β	_	0.99		0.99	—
Labor elasticity	α	_	0.67	_	0.67	
Demand elasticity	ϵ	_	10	_	10	
Relative risk aversion	σ	G	1.00	0.50	1.00	0.50
Match elasticity	ξ	G	0.70	0.10	0.70	0.10
Separation rate	ρ	G	0.10	0.05	0.10	0.05
Bargaining power of the workers	η	U	0.50	0.3	0.50	0.3
Unemployment benefits	Ь	В	0.20	0.15	0.20	0.15
Elasticity of vacancy creation cost	ψ	G	1.00	0.50	1.00	0.50
Scaling factor on vacancy creation cost	κ	G	0.10	0.05	0.10	0.05
AR coefficients of shocks	$\rho_{\{\chi,A,\mu,Y\}}$	В	0.8	0.2	0.8	0.2
Standard deviation of shocks	$\sigma_{\{\chi,A,\mu\}}$	IG	0.01	1	0.01	1
Standard deviation of shocks	$\sigma_{\{Y\}}$	IG	0.05	1	0.05	1

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

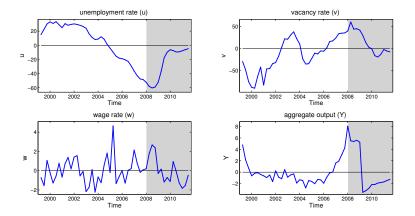
24 / 44

Parameter estimates

	S	VK		CZE			
	Posterior mean	90%	HPDI	Posterior mean	90%	HPDI	
σ	0.2843	0.1319	0.4248	0.4517	0.2989	0.5648	
ξ	0.8196	0.7645	0.8782	0.7758	0.7229	0.8316	
ρ	0.0677	0.0185	0.1259	0.0705	0.0563	0.0843	
η	0.0046	0.0000	0.0099	0.0022	0.0000	0.0050	
Ь	0.1566	0.0001	0.2988	0.4557	0.4083	0.5052	
ψ	2.2769	1.7870	2.7440	1.9257	1.8313	2.0563	
κ	0.1245	0.0811	0.1759	0.0875	0.0524	0.1259	
$ ho_{\chi}$	0.2514	0.0616	0.4554	0.7347	0.6994	0.7641	
$ ho_A$	0.9449	0.8785	1.0000	0.9851	0.9802	0.9914	
$ ho_{\mu}$	0.9563	0.9188	0.9998	0.8222	0.7211	0.8804	
ργ	0.8079	0.6948	0.9267	0.9184	0.8632	0.9806	
σ_{χ}	0.0170	0.0141	0.0199	0.0085	0.0071	0.0099	
σ_A	0.5063	0.1300	0.8161	0.3181	0.2429	0.3981	
σ_{μ}	0.0640	0.0531	0.0743	0.0666	0.0551	0.0767	
σγ	0.0168	0.0142	0.0194	0.0097	0.0082	0.0112	

ESF MU (Brno)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

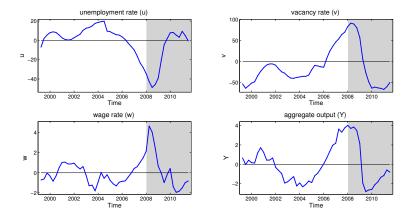

25 / 44

Comments

- Bargaining power of workers, η –almost 0 for both countries \Rightarrow the firms are willing to create vacancies.
- Separation rate, ρ considerably lower than the one estimated for U.S. economy \Rightarrow less flexible Czech and Slovak labour market with limited ability to destroy old and new matches (restricted flows of the workers among industries).
- Vacancy posting elasticity, ψ shifted away from the prior mean \rightarrow the vacancy creation is more costly because of increasing marginal posting costs.
- The estimate of parameter b remarkably high value of 0.46 for the Czech economy (in accordance with the real unemployment benefits)
 × lower value of 0.16 for the Slovak economy supports the view of lower reservation wage for this country.
- Matching function parameter, ξ in accordance with the common values in literature.

ESF MU (Brno)

Trajectories of selected (smoothed) variables – SVK (1/3)

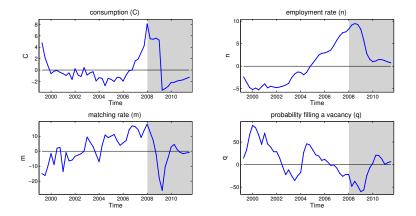


э

< □ > < □ > < □ > < □ > < □ > < □ >

Estimation results

Trajectories of selected (smoothed) variables – CZE (1/3)


Search and matching DSGE model

Humusoft, May 25, 2012 28 / 44

э

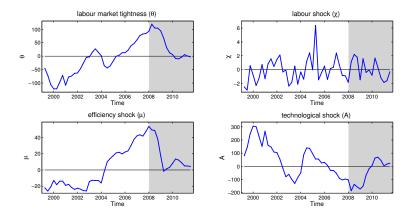
< □ > < □ > < □ > < □ > < □ > < □ >


Trajectories of selected (smoothed) variables – SVK (2/3)

э

- 4 回 ト - 4 三 ト

Trajectories of selected (smoothed) variables – CZE (2/3)

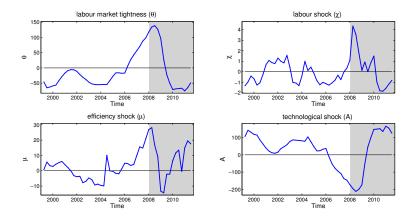

Humusoft, May 25, 2012 30 / 44

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Estimation results

Trajectories of selected (smoothed) variables – SVK (3/3)



э

・ 何 ト ・ ヨ ト ・ ヨ ト

Estimation results

Trajectories of selected (smoothed) variables – CZE (3/3)

Humusoft, May 25, 2012 32 / 44

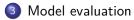
э

・ 何 ト ・ ヨ ト ・ ヨ ト

Comments

- Relative sharp decline in the development of variable q (probability of filling a vacancy) at the end of the year 2006 → the role of an obvious lack of employees in the Czech economy.
- Similar results for the Slovak economy.
- Downturn of both economies influenced a fall of the matching rates *m* below their steady-state values.
- The starting recession has reestablished the equilibrium on both labour markets (see the trajectories of employment rate and labour market tightness).
- The improvement of labour market institutions (trajectory of efficiency shock, μ) \rightarrow remarkable changes on the Czech and Slovak labour markets started at the end of 2004 and at the beginning of the 2006 respectively.

イロト 不得下 イヨト イヨト 二日


IRFs and historical shocks decomposition.

- Except the responses on technology shocks (which is too persistent), the rest of IRFs in accordance with the standard economic theory.
- Similar dynamics of both economies.
- The persistent response of the technology and output shocks in accordance with hysteresis hypothesis (hysteresis of unemployment)?
- Similar historical shocks decomposition in both economies + important role of the technology (more important in the Czech economy) and matching shocks.

34 / 44

Search and matching DSGE model

Humusoft, May 25, 2012 35 / 44

æ

イロト イヨト イヨト イヨト

Sample moments and autocorrelation coefficients (SVK)

		Sample	moments	Lags for autocorrelation coefficients				
		Mean	Std. dev.	1	1 2		4	
и	data	0.00	0.009	0.91	0.71	0.45	0.16	
	model	-0.00	0.010	0.88	0.70	0.51	0.35	
	90% HPDI	(-0.01, 0.01)	(0.007, 0.014)	(0.79, 0.94)	(0.48, 0.83)	(0.11, 0.72)	(-0.08, 0.62)	
ν	data	0.00	0.004	0.91	0.71	0.45	0.17	
	model	0.00	0.008	0.72	0.54	0.40	0.29	
	90% HPDI	(-0.01, 0.01)	(0.006, 0.011)	(0.55, 0.87)	(0.25, 0.80)	(0.08, 0.73)	(-0.09, 0.67)	
w	data	0.00	0.014	0.80	0.53	0.29	0.14	
	model	0.00	0.054	0.72	0.52	0.36	0.24	
	90% HPDI	(-0.04, 0.04)	(0.041, 0.071)	(0.57, 0.84)	(0.30, 0.72)	(0.06, 0.61)	(-0.09, 0.57)	
Y	data	0.00	0.020	0.91	0.74	0.54	0.33	
	model	0.00	0.017	0.79	0.62	0.47	0.36	
	90% HPDI	(-0.01, 0.01)	(0.012, 0.024)	(0.64, 0.88)	(0.33, 0.77)	(0.09, 0.70)	(0.01, 0.63)	

イロト イボト イヨト イヨト

3

Correlation matrix (SVK)

		Da	ata			Model (90% HPDI)					
	и	ν	w	Y	и	ν	W	Y			
и	1.00	-0.75	-0.25	-0.50	1.00	-0.29	0.04	0.01			
	0.75	1 00	0.00	0.00	(1.00, 1.00)	(-0.82, 0.48)	(-0.31, 0.41)	(-0.48, 0.54)			
ν	-0.75	1.00	0.09	0.38	-0.29	1.00	-0.15	-0.02			
	-0.25	0.09	1.00	0.28	(-0.82, 0.48)	(1.00, 1.00)	(-0.47, 0.17)	(-0.58, 0.51)			
W	-0.25	0.09	1.00	0.28	0.04 (-0.31, 0.41)	-0.15 (-0.47, 0.17)	1.00 (1.00, 1.00)	0.40 (0.15, 0.63)			
Y	-0.50	0.38	0.28	1.00	0.01	-0.02	0.40	1.00			
	0.50	0.00	0.20	1.50	(-0.48, 0.54)	(-0.58, 0.51)	(0.15, 0.63)	(1.00, 1.00)			

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 Humusoft, May 25, 2012

37 / 44

Sample moments and autocorrelation coefficients (CZE)

		Sample	moments		Lags for autocorrelation coefficients				
		Mean Std.		1	2	3	4		
u	data	-0.01	0.170	0.95	0.84	0.69	0.52		
	model	0.00	0.134	0.88	0.71	0.55	0.40		
	90% HPDI	(-0.2, 0.2)	(0.081, 0.204)	(0.76, 0.95)	(0.50, 0.87)	(0.27, 0.79)	(0.04, 0.71)		
ν	data	-0.11	0.456	0.95	0.83	0.67	0.50		
	model	0.00	0.301	0.83	0.69	0.57	0.47		
	90% HPDI	(-0.88, 0.88)	(0.170, 0.517)	(0.65, 0.93)	(0.37, 0.87)	(0.22, 0.81)	(0.09, 0.74)		
w	data	-0.00	0.014	0.84	0.60	0.37	0.19		
	model	0.00	0.010	0.72	0.52	0.37	0.26		
	90% HPDI	(-0.01, 0.01)	(0.007, 0.013)	(0.50, 0.86)	(0.25, 0.73)	(0.07, 0.63)	(-0.06, 0.54)		
Y	data	0.00	0.020	0.92	0.78	0.61	0.43		
	model	0.00	0.020	0.81	0.65	0.51	0.40		
	90% HPDI	(-0.03, 0.03)	(0.013, 0.031)	(0.63, 0.93)	(0.40, 0.86)	(0.22, 0.78)	(0.02, 0.74)		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

38 / 44

3

Correlation matrix (CZE)

		Da	nta			Model (90% HPDI)					
	и	ν	w	Y	и	ν	W	Y			
и	1.00	-0.85	-0.75	-0.78	1.00	-0.41	-0.05	-0.02			
					(1.00, 1.00)	(-0.81, 0.16)	(-0.55, 0.44)	(-0.65, 0.56)			
ν	-0.85	1.00	0.76	0.82	-0.41	1.00	-0.03	-0.01			
					(-0.81, 0.16)	(1.00, 1.00)	(-0.53, 0.46)	(-0.63, 0.52)			
w	-0.75	0.76	1.00	0.70	-0.05	-0.03	1.00	0.61			
					(-0.55, 0.44)	(-0.53, 0.46)	(1.00, 1.00)	(0.31, 0.84)			
Y	-0.78	0.82	0.70	1.00	-0.02	-0.01	0.61	1.00			
					(-0.65, 0.56)	(-0.63, 0.52)	(0.31, 0.84)	(1.00, 1.00)			

イロト イ部ト イヨト イヨト 二日

Comments

- The model is very successful in matching sample moments and autocorrelation coefficients (not typical for such a small-scale model!).
- Results are in accordance with the authors arguing that the model with search and matching frictions in the labour market is able to generate negative correlation between vacancies and unemployment.
- Cross-correlation coefficients not sufficient for the correlations of unemployment and the rest of observable variables (similar experience for U.S. labour market) → presence of matching shock (acting as a residual in employment and wage equations).

3

3 Model evaluation

3

・ロト ・四ト ・ヨト ・ヨト

Conclusion

- Good ability to identify most structural parameters.
- Plausible description of labour market dynamics and properties of the Czech and Slovak labour market.
- Convincing evidence that wage bargaining process is determined mainly by the power of the firms.
- The structural properties of both markets do not differ too much from the properties of the U.S. labour market.
- Flexible wage environment in both economies × the firms are confronted by the increasing vacancy posting costs that limit vacancies creation + the lower separation as an evidence of reduced mobility of the workers.

Further research

- Robustness check based on estimation using the information provided by a variety of filters or by direct linking of the observable data to the DSGE model.
- Model comparison based on various wage bargaining settings.
- Inclusion of price rigidities and monetary policy (monetary rule) \rightarrow to analyse implications of wages and labor market shocks on inflation process.
- Incorporating labour market rigidities into an open economy model (the direct effects of labour market shocks should become more obvious).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you for your attention.

Comments?

Suggestions?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <