A Macro-Finance Model of the Term Structure: the Case for a Quadratic Yield Model

Jan Brůha

2010, June

Czech National Bank

Title page Outline

Structure of the presentation

Structure of the presentation:

- Motivation
- Model Formulation
- Filtering & Estimation
- Conclusions & Results

Macroeconomic models of the yield curve

- Add macro to the finance arbitrage-free models
 - affine models, (Ang-Piazzesi, 2003, 2006; Rudebusch-Wu, 2008);
 - Arbitrage-free Nelson-Siegel model (Christensen-Diebold-Rudebusch, 2008);
- Bond pricing in DSGE models (Rudebusch-Swanson-Wu, 2006);

Applications:

- forecasting of inflation and real activity;
- central bank liquidity facilities;
- great moderation and great conundrum.

The spread on the money market

Jan Brůha QUADRATIC YIELD MODEL

< 口 > < 同

The spread between government bonds and the 3M Pribor

Jan Brůha QUADRATIC YIELD MODEL

The decomposition of the spread

Jan Brůha QUADRATIC YIELD MODEL

< 17 >

The Fama-Bliss regression

The FAMA-BLISS REGRESSION (AER, 1987):

Excess $\operatorname{Return}_{t+1} = \alpha + \beta \operatorname{Spread}_t + \varepsilon_t$.

- $\beta = 0$ is implied by the expectation hypothesis of the term structure.
- The recently introduced macro-finance term structure models (affine latent models) have problems if $\beta \neq 0$.

Econometric studies usually find that on the low end of the yield curve $\beta \cong 0$, i.e., the expectation hypothesis approximatively holds.

Results of the Fama-Bliss regression for the Czech money market

Rolling regression (18 months window) of the Fama-Bliss regression on the Czech data suggest that:

- up to the second half of 2008, $\beta\cong \mathbf{0}$
- $\beta \gg 0$ since then.

See next two figures:

- The dynamic prediction of the arbitrage-free version of the dynamic Nelson Siegel model

Recursive estimation of Fama-Bliss β s

< 17 ▶

(*) *) *) *)

A Quadratic Term Structure Model

State equation

As in affine models, the underlying set of macroeconomic factors follows a VAR process:

$$X_{t+1} = \Phi X_t + \kappa + \Psi \varepsilon_{t+1}.$$

The log of the pricing kernel is defined as follows:

$$-m_{t+1} = \delta + \Gamma X_t + X_t^T \Delta X_t + \varsigma^t \varepsilon_{t+1} + \kappa \eta_{t+1},$$

hence the short-term interest rate i_t is given by:

$$i_t = -\mathbb{E}_t m_{t+1} - \frac{1}{2} \mathbb{V}_t m_{t+1} = \delta + \Gamma X_t + X_t^T \Delta X_t - \frac{1}{2} (\varsigma^T \varsigma + \kappa^2).$$

A Quadratic Term Structure Model – Recursion

The price of a k-period bond p_t^k is guessed in the form of:

$$-p_t^k = A_k + B_k^T + X_t^T C_k X_t,$$

with $A_1 = \delta - \frac{1}{2}(\varsigma^T \varsigma + \kappa^2)$, $B_1 = \Gamma$, $C_1 = \Delta$.

Under log-normality:

$$p_t^k = \mathbb{E}_t \left(m_{t+1} + p_{t+1}^{k+1} \right) + \frac{1}{2} \mathbb{V}_t \left(m_{t+1} + p_{t+1}^{k+1} \right),$$
$$i_t^k = -k^{-1} \log p_t^k.$$

A Quadratic Term Structure Model – Recursion (cont.)

The undetermined coefficient technique yields the following recursion:

$$-A_{k} = -\left(\delta + A_{k-1} + 2tr\left[C_{k-1}\Psi\Psi^{T}\right]\right) + \dots$$
$$\dots + \frac{1}{2}\left[\varkappa^{2} + \varsigma^{T}\varsigma + B_{k-1}^{T}\Psi\Psi^{T}B_{k-1} + 2tr\left[\Psi^{T}C_{k-1}\Psi\Psi^{T}C_{k-1}\Psi\right]\right],$$
$$-B_{k}^{T} = -\left(\Gamma + B_{k-1}^{T}\Phi\right) + 2\left(\varsigma + B_{k-1}^{T}\Psi\right)\Psi^{T}C_{k-1}^{T}\Phi,$$
$$-C_{k} = -\left(\Delta + \Phi^{T}C_{k-1}\Phi\right) + 2\Phi^{T}C_{k-1}\Psi\Psi C_{k-1}^{T}\Phi.$$

Note that if $C_1 = \Delta$ is symmetric, so are C_k .

A Formulation of the Empirical Model

$$\begin{aligned} X_t &= \Phi X_{t-1} + \Psi \varepsilon_t, \\ i_t^k &= -\frac{A_k}{k} - \frac{B_k^T}{k} X_t + X_t^T \frac{-C_k}{k} X_t + \nu_{it}. \end{aligned}$$

We observe i_t^k and perhaps some elements of X_t .

A non-linear state space system has been obtained, we need to evaluate the likelihood (estimation), to filter the state (forecasting), and so on

Non-linear state space models

There are various choices of filtering non-linear state space models:

Extended Kalman filter: based on local linearization of the state and observation equations;

Gaussian sum filter: global filter; the probability distributions being approximated by a convex combination of gaussian pdfs;

Partcile filter: global filter; the distribution of states approximated using MC techniques;

Unscented filter: local filter based on unscented transformation.

Theoretical formulation Numerical filtering

The first-order approximation

Consider $X \sim N(\mu, \sigma^2)$ random variable and $Y = X^2$.

The first-order approximation (EKF) of Y works as follows:

$$\widetilde{Y}^1 = \mu^2 + \frac{\partial Y}{\partial X}|_{X=\mu}(X-\mu) = \mu^2 + 2\mu(X-\mu),$$

hence

$$\mathbb{E}\widetilde{Y}^{1} = \mu^{2} < \mathbb{E}Y = \mu^{2} + \sigma^{2}$$
$$\mathbb{V}\widetilde{Y}^{1} = 4\mu^{2} \neq \mathbb{V}Y = 2\sigma^{4} + \mu^{2}\sigma^{2}.$$

The first order approximation is biased

and the EKF may yield a biased estimation of the states.

The unscented filter

The unscented filter tries to approximate the mean and the variance of the non-linear transform more precisely than the first -order approximation.

Three possible ways:

- unscented transform a kind of quadrature;
- Monte Carlo integration;
- sometimes exact integration possible.

Otherwise, the standard Kalman filter formulae apply. \Longrightarrow thus this is an approximate filter, but hopefully more precise than the EKF.

Theoretical formulation Numerical filtering

The unscented transformation

How does the unscented transformation work?

• Define a set of points:
$$\{x^{(\pm i)}|x^{(\pm i)} = \bar{x} \pm \Delta x^i\};$$

2 Compute
$$y^{(\pm i)} = f(x^{(\pm i)});$$

3 Set
$$\bar{y} = \sum_{i} w_{i} y^{(\pm i)}$$
; $P^{y} = \sum_{i} w_{i} (y^{(\pm i)} - \bar{y}) (y^{(\pm i)} - \bar{y})^{T}$.

The unscented transformation $\Delta x^i = \sqrt{\frac{n}{1-w_0}} (P^x)_i^{1/2}$ and $w_i = \frac{1-w_0}{2n}$.

For large-dimensional problems, x^i could be randomly drawn from $N(0, P^x)$, and $w_i = n^{-1}$.

(人間) ト く ヨ ト く ヨ ト

Algorithms' competition

I did a Monte Carlo study, which suggests that:

- the unscented filter can compete with the particle filter in precision,
- but is faster;
- the EKF and the Gaussian sum filter are slow and inaccurate.

Conclusion

It is feasible to estimate and filter the quadratic yield model in a reasonable time using the unscented filtering.