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                                                                               Abstract  
 

In this paper is presented a modern non-destructive method for the evaluation of the 
stress and strain state in metallic structures. This method can be successfully applied in 
civil engineering, installations or in structures where the determination of stress state can 
not be realized by conventional method. 

 
1 The mathematical model  
 
 The piezoelectric effect implies the conversion of electrical to mechanical energy and 
vice–versa. It is observed in many crystalline materials, such as quartz, Rochelle salt and lead 
titanate zirconate ceramics, which display the phenomenon strongly enough to use it. The 
direct piezoelectric effect consists of an electric polarization in a fixed direction when the 
piezoelectric crystal is deformed. The polarization is proportional to the deformation and 
generates an electrical voltage over the crystal. The inverse piezoelectric effect is the opposite 
of the direct effect: an applied electric field induces a deformation of the crystal. In our case 
the cantilever beam deformation are transform in electrical voltages trough a direct 
piezoelectric effect [2].  
 The direct piezoelectric effect is described by Navier’s equations for structural 
mechanics (mechanical stress),  
 

                                             KT =∇−                                                                                      (1) 
 

where T is the stress tensor field: 
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and by Gauss law of electrostatics:       
                                         ρ=∇− D                                                                                          (3) 

 

Using a compress matrix notation, the constitutive equations that describe the 
piezoelectric effect can be written in the stress-charge form as follow: 
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where S is strain field, E, electric field, cE, elasticity matrix, e, coupling matrix, D, electric 
displacement field, εS, the permittivity matrix. The subscripts, E and S indicate at constant 
electric field and strain, respectively [1].  
 The stress-charge form is selected for the constitutive equation as this suits the form in 
which the material data is given. 
 
 



2  Geometry of the model 
 

 To simulate the structure we have chosen a multiphysics problem: plane stress and 
piezo plane stress. The geometry used is presented in figure below: 
 

 

 
Figure 1:  The geometry of the problem. Figure 2:  Zoom in the PZT cell section. 

  
The domain R1 is an isotropic structural steel beam with a length of 550 mm, width of 

50 mm and thickness of 5 mm. This material is defined in Library 1 of [COMSOL 
Multiphysics] [1]. The domain R2 is the PZT 5H cell which has a length      20 mm, width of 
50 mm and thickness of 0,5 mm. 

For the structural steel we used the following material constants:  E = 2·105 [MPa], 
Poisson’s ratio ν = 0.33 and density  ρ = 7850 kg/m3.  

The PZT – 5H properties are those listed in [COMSOL]: 
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The boundary conditions resulted from the working conditions. For the mechanical 

part of the problem a constraint of zero movement on the left side of the beam and the PZT 
cell has been considered. The load was applied on the right end of the beam only on the y 
direction. 

Figure 3:  The mechanical boundary conditions. 
 



In the case of the electrical aspect of the problem we set the horizontal bottom surface 
of the PZT cell to ground and the top surface was consider a zero charge/symmetry condition. 

Applying the FEM method, the meshed model contains a number of 3516 triangular 
elements. 
 
3   Results 
 

 In the paper three basic analysis types available in the Structural Mechanics Module 
have been taken into consideration: 

• Static; 
• Eigenfrequency; 
• Time dependence. 

At first, a statical analysis has been made, where a uniform distributed load has been 
applied at the right end of the beam. This force has only a vertical component Fy = 100 N. A 
stationary linear solver direct UMFPACK has been used. In Fig. 4, 5, 6 are represented the 
displacements along the y axis, the maximum value recorded at the end of the cantilevered 
beam respectively the voltage recorded for this model. 

 

 
Figure 4:  Displacement of the beam on the y axis for Fy = 100 [N]. 

 

  
Figure 5:  The displacement of the right end 

of the beam (y = 0,050 [m]). 
Figure 6:  The voltage measured with the 

PZT 5H crystal (V ~ 275 [V])  . 
 

The maximum stress calculated with Von Mises criteria has been determined in the 
left side of the beam (in the vicinity of the clamping side) and was equal to  294  [MPa] and 
the minimum value in the right side of the beam 0,168 [MPa].  



The voltage response of the PZT cell at different loads (Fy ∈ {5, 10, 25, 50, 75, 100} 
[N]) has a linear variation as one can see in Figure 7. For the same loads we determined the 
displacement on y axis of the right side of the beam and the maximum stress values which has 
the same linear variation. 

 

  
Figure 7:  The linear dependence F(U). Figure 8:  Displacement of the right end of 

the beam. 

 
Figure 9:  The maximum stress values. 

 
       Table 1:   VALUES DETERMINED IN STATICAL ANALYSIS 
 

Fy [N] Von Mises 
stress [MPa] 

ydisplacement [mm] U [V] 

5 14,71 2,53 13,75 
10 29,42 5,06 27,51 
25 73,55 12,65 68,77 
50 147,1 25,30 137,55 
75 220,6 37,95 206,33 

100 294,2 50,61 275,10 
 

An eigenfrequency analysis finds the eigenfrequencies and modes of deformation of 
the analyzed structure. The eigenfrequencies f in the structural mechanics field is related to the 
eigenvalues λ returned by the solvers through: 
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The purpose of the eigenfrequency analysis is to find the six lowest eigenfrequencies 

and their corresponding shape modes. This model uses the same material, load and constraints 



as the statical analysis. A linear system solver direct Umfpack system was used and the 
following are presented below: 

 
                 Table 2: THE FIRST SIX EIGENFREQUENCIES OF THE MODEL 
 

f1 f2 f3 f4 f5 f6 
9,98 Hz 64,48 Hz 174,73 Hz 341,91 Hz 564,31 Hz 841,75 Hz 

  
A time-dependence analysis for the transient solution of the displacements and 

velocities as functions of time was applied. In this case, the material properties, loads and 
boundary conditions are function of time. The purpose of this analysis was to find the 
transient response from a harmonic load with the same amplitude as the static load during the 
first two periods. The excitation frequency has been taken of 50 Hz, which is between the first 
and second eigenfrequency found in the eigenfrequency analysis.  

A harmonic load Fx(t) = 0 and Fy(t) = 100 sin (100 π t) [N] has been used. Damping is 
very important in transient analysis but difficult to model. The Structural Mechanics Module 
supports Rayleigh damping, specifying damping parameters proportional to the mass (αdM) 
and stiffness (βdK) in the following way:  

 
                                  KMC dKdM βα +=                                                                      (6) 

 
where C is the damping matrix, M is the mass matrix, and K is the stiffness matrix. One 
calculated according to [1] the mass damping parameter and the stiffness damping parameter. 
The damping parameters have been considered at their default values in the previous analysis, 
due to the fact they were only been used for transient and frequency response analysis. The 
structure has a constant damping ratio of 0,1. Two frequencies near the excitation frequency, 
20 respectively 60 Hz, have been considered, to calculate the damping parameters, according 
to the FEMLAB code  [1]: 
 αdM = 18,849 1/s and βdK = 3,979·10-4 s. 
 This problem was computed using a time dependent solver with the time set on the 
interval [0; 0,08][s] with a step of 0,001, a relative tolerance of 0,05 and an absolute tolerance 
of 10-9.  
The following waweformes for the displacement on the x and y axis are represented in Fig.10 
and 11. 
 

  
Figure 10:  The horizontal (x) displacement 

of the right end of the beam. 
Figure 11:  The horizontal (x) displacement 

and the vertical ( y) displacement of the right 
end of the beam. 

The voltage output measured on the PZT cristal has a sinusoidal figure with a maximum value 
of 182,072 [V] and a minimum value of -150,962 V. 
 



 
Figure 12: The waveform of the voltage (the horizontal axis is time and the vertical axis is 

voltage similar to electric potential) 
 

 For a more accurate solution the time interval has been increased from 0 to 0,2 [s] and 
in this case, the total displacement and the equivalent voltage response are represented in 
Fig.13 and 14. 

  
Figure 13: The total displacement of the right 

side of the beam. 
Figure 14: The voltage output on the PZT. 

 
4   Conclusions 
 

The paper presents a theoretical model, able to give an accurate  prediction of the  displacement of a 
steel beam after impact by intermediate of  the voltage response. The theoretical model 
approximates very well all experimental data.  Finally, the transient response from a harmonic 
load has been  measured on a on the PZT crystal. This method could be further developed in civil 
engineering, installations or in big structures where the determination of stress state can not be realized 
easily using the non-conventional methods. 
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