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Abstract

The FEMLAB code based on weak formulation of PDE’'problem was used at
a solution of feedback thermo-mechanical interactio in pre-pressed rubber
block used for resilient elements of the composedam wheels. The structural
motion and heat conduction equations are solved iatactively as time
dependent problems. The equality of heat energy dsity and dissipation
energy density realizes the coupling between the @ations. The dissipation
energy density is computed according to the assumgaoportional damping
model. In the paper the results of thermo-mechanidgprocesses in cases of a
plane strain and 3D space deformation under statipre-pressed and cyclic
dynamic loading are presented and analyzed.

1 INTRODUCTION

In frame of grant task GA CR 101/05/2669 “Dynamacel reliability of vibrodamping elements from
thermo-visco-elastic-materials” we deal with thetimeanatical modeling of rubber segments that are
used in passive damping for reduction of noise\anichtion of composed railway wheels (see [1],[2]).
These segments that are pre-pressed between tlandimisk represent a transformation deformation
element between both parts of the wheel. Thendtaé stress of the segments consists of static pre
press given by a mount and dynamic stress comarg folling the wheel on the rail.

In case of the static pre-stress it is considesegel deformation (cca 20%) that is modeled in frafe
the grant task by finite deformations and visca@dg theory [3]. The dynamic stress at relativel
smaller deformations (up to 2%) is herein modelgdlibear theory of viscoelasticity concerning
thermo-mechanical coupling since elastomers arergén characterized by high inner damping and
also marked dependence on temperature [4]. Theetatyse field besides the mechanical straining
also causes additional loading and can influenedifittime of the elements.

The thermal processes in the elements are quitglamated since in addition to heat flow between a
body and surroundings, heat is generated by tremation of dissipated mechanical energy, too. At
stationary regime the temperature stabilizes afetain time so that the heat, which is generated b
energy dissipated by the inner damping, is in @guilm with the heat drained to environment. In
addition the changes of temperature cause backyvahdinges of elastic and damping behaviors and
that consequently changes dynamic properties ohalavsystem. Since temperature changes inside
the deformed elements due to thermo-elasticity wexglectable small with respect to dissipated
energy temperature changes this effect was omitted.

The simple discrete mathematical model for analg$ishermo-mechanical processes at harmonic
loading of the rubber resilient segments of thentrasheels is in [5]. Numerical modeling of
temperature distribution inside the segments athangical harmonic excitation by finite element
method (FEM) is presented in [6]. There is heategation from mechanical energy absorption
modeled by constant heat power density in thediime.

The FEMLAB code based on weak formulation of PDafsblem was used at a solution of
feedback thermo-mechanical interaction by FEM. un @pproach structural motion and heat
conduction equations are solved interactively am tdependent problems. The conservative
energy law, i.e. equality of heat energy densitgl dissipation energy density, realizes the
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coupling between the equations. The dissipatiorrggnéensity is numerically evaluated
according to the assumed damping model.

In this paper the first results of two approachesmesented and analyzed: a) 2D solid model (more
detail in [7]) and especially b) 3D solid model.eTsolid and heat transfer modulus of FEMBLAB or
COMSOL, respectively, were used for a solution afiltirphysical problem. The models were
dynamically loaded, mechanical energy lost duerap@rtional damping generated inner heat. Heat
transfer between rubber and outer air and steés @and stiffness dependence on temperature were
considered. The material parameters of the modeg wientified from laboratory dynamic tests, such
as temperature, force and displacement measurewigiaised on the rubber samples of the composed
tram wheels.

2 MATHEMATICAL MODEL OF THERMO -MECHANICAL INTERACTION

Scheme of the mathematical model with a transfen@thanical energy into heat is depicted on Fig.1.
It is concerned a time dependent a) 2D plane deftbom b) 3D space deformation case of linear

visco-elastic body including inertia forces. At rdkion the energf\, is changed to the herrod in

the body (rubber). Part of the heat flows into sunding (steel, air) by heat tranfgr. Part of the heat

cumulates in the body and increases its temperafuréhe boundary conditions of the body
deformation and loading are defined so that théobopart is fixed, upper part is free in deformatio

and is uniformly loaded by stresggs=0,p, #0 (press). Heat conductivity coefficients and
reference temperatures of surrounding (ar 5 T,, steel -a,;T,,) give the boundary conditions of
heat conduction. Initial conditions are describgdvsbctors of displacements and velocitiest , and
initial temperaturel .
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Fig. 1 Scheme of mathematical model with thermo+traaccal interaction
The equation of motion can be expressed in diga@tiorm as
MU +Bu+Ku =F, @

where mas$/, dampingB and stiffnes¥ matrices are generated from the Lame equation ¢ibmo
by weak formulation of FEMFE is a vector of excitation forces, =[u,,V,,....,U,,V,] is displacement
vector 6 is number of nodes). A dot above the letter dedigga time derivative. The damping matrix
is defined according to the expression valid fapartional damping

B=a,M +BK . )



The stiffness matrix changes with temperature siheaon-linear dependence of Young modius
on temperatur@ is introduced into the model:

E(T) =E/QA+k(T -Ty)), (3)
wherek, is parameter ant is initial temperature of the body.

In continuum mechanics the dissipated enefgy = IAddV of the volumeV can be expressed for
\Y
one loading period T in the form of density as

Ay = oy, dey = [oq,€,dt, 4)
T

whereo, is a tensor of the dissipated stress and are tensors of strain and strain rate, respegtivel
Then the density of dissipated power can be written

/id =04, & - (5)
For the case of plane deformation, the tensor iootagn be transferred into vector form as
Ay ={os}' i}, (6)
where components of the vectors are

{Ud} =|_adxx;adyy; deyJ=[0d11;0d22;0d12]’ {g}:l.‘éxx;gyy;yxyj :[511;522;2512]-

The components of strain rate for small deformatiare defined

ou ov . ou  ov
= +

g =, & =, o=t 7
“ooax Y oy Vs dy ox (7)

The components of the dissipated stress for caspragortional damping (2) with coefficients
a, =06, 20 are

0'd xx = IBK 1—E/,12 (gxx + IUSW)
Tdyy = B _E/Jz (gyy + :u‘éxx) (8)
Cany = Be gy V)= AU,

After substituting Eq. (7), (8) into (6) we receive

C o E [(eu? (ov) ., (euYav) . (feu) . fou)ov) (ov)
= (5] (5] 55 e ”{(a—y) *Z(a—yJ(&H&]] -
)

In similar way the density of dissipated powerdase of space deformation can be developed as




- E (.2 (. .
Ay = P m[fu +E(gkk£ij5ij )J (10)

Hence the dissipated energy changes into the leatding to the equatio , ,=/\,. The heat

both cumulates in the body and passes to surrogndlieglecting a thermal exchange by convection
and concerning/l,cp,,o = const, this process can be mathematically describeddoyi€r equation of

prod

the linear heat conduction

10 mp(%_-[j +{L}T{q} = Qprod ’ (11)

.
where 1L} = ii is divergence and gradient operatadi; =A, is volume density of
a a prod d
X o0y

generated heat poprrod and {q} =-AlgradT surface density of heat flow.

The heat transfer by surfaBds described by the Newton cooling law
q=-as [(TBe _TBi)’ (12)

where ag (B =a,m for air and metal, respectiv@lyis a coefficient of heat transfer on boundBry
quantitiesTg,, Ty, are temperatures on outer and inner side, respctof the boundar.

3 NUMERICAL RESULTS OF 2D AND 3D RUBBER SEGMENT MODELS AT DYNAMIC LOADING
WITH THERMO -MECHANIC INTERACTION

The above described mathematical model was usesofation of thermo-mechanical processes
in rubber block (width 0.04%, height 0.0258), thickness 0.0%) as geometrically simplified rubber
resilient segment used for the wheels under predsshear dynamic loadings. The material of the
block was rubber on basis of synthetic isopren diata elastomer with hardness Shore 80. The
rectangular cross-section of the 2D block was nikdhe516 triangle elements. The 3D model was
automatically generated and consists of cca 80Wéheedral elements with 48 000 DOF’s. The FEM
model was developed in the program environment FEBIB.1 and COMSOL3.2, respectively.

The mechanical and thermal parameters of the nweled obtained from their identification based
on previous measurements of loading force, dispi@ce and inner temperature responses of the
segments for case of harmonic loading at frequetyz, pre-press 6kN and dynamic amplitude 2kN

(see [8]):a, =30W/m?/°C, a, =200N/m’/°C coefficients of heat transfer into air and steel,
respectively, T, =T,, = 255°C temperatures of air and stee], =1000] /kg/°C specific heat

coefficient of rubber,A = 028N /m/°C heat transfer coefficient of rubber =1357g/n’
density of rubberEy=52 MPa Young modulus for temperatuf®=26C, k;=0.06 parameter of the
Young modulus dependence on temperatywe0.49 Poisson constant. The initial temperature of
rubber and surrounding was defin26°C .

Continuous uniformly distributed dynamic loadingrad the upper boundary of the block was
for the press p, = p,sin(27ft), where amplitude p=5.32e5 Nm? and for the shear

P, = P, Sin(27ft) , wherep,=2.13e5Nmi®. For the press case, the amplitude of the totakfon the

whole segment corresponded to the test load ardplidkN. Since the shear stiffness is about 3 times
lower than press stiffness the amplitude of theasheas decreased so that the maximal shear
deformation amplitudes were comparable with thespreformations. For both type of loading we
chose different coefficients of proportional danpine. S« =12e-4,ay =0 (cca 15% damping ratio)
for the press an@¢ =8e-4,a =0 (cca 8% damping ratio) for the shear.



Loading frequency was 20Hz for both cases. The loading time block wakiration 200s.
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Figure 2 The total deformation field of t&@® rubber block at dynamic loading (press — on the
left, shear — on the right)
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Figure 3 The total deformation field (t=199.4s)tts central cross-section along the length of
the rubber block(3D model)
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Figure 4 Fields of strain energy (left) and distplapower density (right) of th2D block
during one loading cycle.

The linear solver UMFPACK that is based on multiied method performed time integration
for the 2D case and LU factorization of sparse fotieht matrices was used for solution of the
equation system. The integration step washad output time step for storage data was.le

The conjugate gradient linear solver with a preeittoner geometric multigrid was used for
time integration of the 3D case. The integraticgpsivas automatically set and output time step for
storage data was fe
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Figure 5 Field of strain energy density (t=199.4ft) and dissipated energy density
(t=199.6s,right) at the central cross-section alibreglength of the rubber bloc{8D model)
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Figures 2 to 8 depict the results of numerical $atons. The total displacements, i.e. the
Euclidean norm of displacement vector in singlees)dand deformed contours at a selected time are
shown in Fig.2 a 3. Regarding boundary conditiothefupper side of the block for press loading, the
maximum total displacements are in upper cornershefblock where besides maximum vertical
displacement also dilatation in horizontal directaxcurs.



On Fig.4 and 5 there are shown fields of the dgmdidissipated power and density of strain
energy during one loading period T=0.05s. On Figr4he 2D model each floor of these figures from
bottom up corresponds to increasing sampled tiTe@.01) of the cycle. By comparison of the time
dependences from Fig. 4 it shows that there iseslafiimity with phase lag between both quantities.
This lag is caused by dependence of dissipated pomvstrain rate besides of strain in the casénstra
energy. For harmonic loading it leads to the lagqoérter of a period. So where it is the peak
amplitude of one quantity there is null amplitudetlte other and vice verse. It can be seen at the
bottom and upper floors of both figures. In theulssof the energy and power distributions a side
effect can be seen. There are spots of high coratemt in the bottom and upper (in case of the ghea
corners of the block due to geometric discontiesitind shear stresses in these points and insaffici
dense space discretization. However since a laggé thansfer into surrounding at these points, this
side effect had not significant effect on a temperadistribution of the block as it is shown ballo
The same phenomena can be seen also in the 3D (riglé)).

The next two figures 6 and 7 depict temperatureldief the block for different times of loading and
cooling. For 2D case for loading there &®s bottom, 100s middle and 200s upper floor and for
cooling t=200s, 225s and 250s). For 3D case (Fig.7) for fgathiere aré=0s (A), 50s (B), 100s (C),
150s (D) and 200s (E). For both cases, it can be sen-uniform distribution of temperature inside
the block. The heat transfer disturbs a shape igffiof temperature fields with the fields of the
densities (Fig.4 and 5). Temperatures stabilizth wWime and the thermo-mechanical equilibrium
settles. The distribution is dependent on thersteaergy field to which a dissipated energy isaliye
dependent according to proportional damping. Initeaddthe temperature field is dependent on the
heat transfer into surrounding. So we can see logawperatures at the rubber-steel interface wisere
the largest heat transfer. The absolute valuesropératures also depend on the frequency of loading
and size of damping coefficients. The generated teéinearly dependent on both of them. The
damping coefficients can be determined from thes lfzctor of given material or by parametric
identification from measurement of temperature oesps at dynamic tests. In the other case the drain
of heat into surrounding has to be concerned.
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Figure 6 Temperature field of the 2D segment fdiedint times of loading (0s bottom,100s middle
and 200s upper view) (left side) and cooling (2DP5s and 250s) (right side).



A) B)
H P

. —
Q) D)

—

-
E)

32
- 30
28
26

Fig. 7 Temperature fields
the central crossectior
along the length of ti
rubber block 3D mode)
during loading t=0s (A
t=50s (B), t=100s (C
t=150s (D), t=200s (E).
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Fig. 8 Temperature distribution on the boundaries of3beubber block (top view (A), bottom view
(B)) at the end of loading regime (t=200s).

For the press loading it can be seen non-symmdistdbution in lower a upper halves of the block.
The maximum temperature for the press is reachéteaipper half of the segment.

4 CONCLUSION

The paper deals with the numerical modeling anditewl of feedback thermo-mechanical
interaction of a thermo-viscoelastic body at harmdoading by finite element method. The proposed
method was applied on the case of rubber reséiegment of tram wheels.

The aim of this investigation is to improve knowgedof thermo-rheological behavior of
rubberlike materials. Therefore we designed mattiealanodel, whose coefficients can be evaluated
by the identification process on the test pattdrm @damping material under selected simple stress
state, such as uni-axial tension or/and comprespime shear. From loading point of view a harmonic
type seems to be suitable, since changes of rhiealggarameters are rather slowly varying in time
and there is longer time for their observation.

In addition from practical point of view an analysof thermal processes in rubber resilient
elements can lead to their better design with doéigenerated heat into surrounding what can teelp t
increase their lifetime at heavy service loading.

For identification of the model parameters we ptanperform next dynamic tests of rubber
samples under different pre-presses, dynamic foares temperature conditions using a hydraulic
shaker and climat chamber in our laboratory in ®lZor measurement of surface temperature fields
will be used a thermo-camera.
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