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Abstract
The paper presents an implementation in Comsol Multiphysics 3.2 of Holzapfel's material model for 
the viscoelastic stress response of carbon-black filled rubber at large strains. The simulation in Comsol 
3.2 uses the Structural Mechanics Module finite strain formulation based on the material configuration 
with the right Cauchy-Green tensor as a strain measure. The time independent response of the rubber is 
modelled by the Mooney-Rivlin hyperelastic material with uncoupled volumetric/deviatoric free energy 
function. In addition to the volumetric and isochoric elastic response function we use a configuration 
free energy, which drives the viscoelastic response. Thus we obtain a decoupled stress response which 
consists  of  equilibrium  and  non-equilibrium  parts.  The  non-equilibrium  viscoelastic  stresses  are 
evolving internal variables governed by rate equations  which are modelled in PDE General Form. In 
our simulation we used some predefined SME variables and we defined several other suitable variables 
such  as  the  isochoric  elastic  stresses  and  material  tangent  modulus.  The  paper  presents  three 
simulations of the elastomeric viscoelastic solids response in relaxation, creep and cyclic loading.
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1. Introduction

Rubber materials are applied in various branches of mechanical engineering because of their 
damping  properties.  The   modelling  and  FEM  calculation  of  the  structural  response  requires  a 
constitutive model which captures the complex material behaviour. The present paper focuses on the 
viscoelastic behaviour of the filled rubber.

The  ground-stress  response  of  filled  rubber  is  usually  modelled  in  the  phenomenological 
framework of finite elasticity  by Mooney-Rivlin or Ogden models,  or by Aruda and Boyce model in 
terms of the micromechanically based kinetic theory of polymer chain deformations.

Beside  the  elastic  response  the  filled  rubber  shows  also  the  finite  viscoelastic  overstress 
response which is apparent in creep and relaxation tests. Cyclic loading tests  show a typical frequency-
dependent hysteresis as well where the width of the hysteresis increases with increasing stretch rates. 
The  constitutive  theory  of  finite  linear  viscoelasticity   is  a  major  foundation  for  modeling  rate-
dependent material behaviour based on the phenomenological approach.  In this approach, a suitable 
hyperelasticity model is employed to reproduce the elastic responses represented by the springs, while 
the dashpot represents the inelastic or the so-called internal strain. Its temporal behavior is determined 
by an evolution equation. 

2. Model for finite viscoelasticity

The material model of finite strain viscoelasticity used in our work follows from the concept of 
Simo [2] and  Govindjee & Simo [4]. The finite element formulation of the model was elaborated by 
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Holzapfel [3] and used by Holzapfel & Gasser [5] to calculate the viscoelastic deformation of fiber 
reinforced composite material undergoing finite strains. 

The  model  is  based  on  the  theory  of  compressible  hyperelasticity  with  the  decoupled 
representation of the Helmholtz free energy function with the internal variables (Holzapfel [1], p. 283) :
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The first two terms in (1) characterize the equilibrium state and describe the volumetric elastic response 
and the isochoric elastic response as t∞ , respectively.  The third term is the dissipative potential 
responsible  for  the  viscoelastic  contribution.  The  derivation  of  the  2nd Piola-Kirchhoff  stress  with 
volumetric and isochoric terms:
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where  SVOL
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∞ is  the  volumetric  and  the  isochoric  stress  response  respectively  and the 
overstress Q   is stress of 2nd  Piola-Kirchhoff type.
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where Dev  . is the deviatoric operator in the Lagrangian description. Motivated by the generalized 
Maxwell rheological model (Fig. 1), the evolution equation for the internal variable  Q takes on the 
form (6).

 Fig. 1. Maxwell rheological model 
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∞∈0,∞ in  the  expression  (7)   is  the  nondimensional  strain  energy  factor  [2,4],   is  the 

relaxation time, ℂ ISO is isochoric contribution of the tangent elasticity tensor and Ė is the material 
strain rate tensor
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The material is assumed slightly compressible, the volumetric  and isochoric (Mooney - Rivlin) parts of 
Helmholtz free energy function were chosen in the form 
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with the parameters c1,c2  and d. The viscoelastic behavior is modeled by use of =2 relaxation 
processes  with  the  corresponding  relaxation  times     and  free  energy  factors  

∞ .  All  the 
parameters were determined from experimental measurements. 
  

3. Finite element simulation in Comsol Multiphysics

 The  material  model  described  above  was  implemented  into  Comsol  Multiphysics.  The 
Structural Mechanics and PDE modules were used for the calculation of time dependent response of a 
rubber block in plain strain in different loading regimes.  The implementation is very similar to the 
Viscoelastic material case in Structural Mechanics Model Library. The application mode type plane 
strain  in  Structural  Mechanics  Module,  the  time  dependent  analysis  and  the  Mooney-Rivlin 
hyperelastic material were chosen. The components of the isochoric stress rate Ṡ ISO

∞ were determined 
in Symbolic Toolbox in Matlab and added to the scalar expression table in Comsol. PDE module was 
used for the integration of the evolution equation (6). The results of the different simulations show the 
good qualitative agreement with experimental time dependent behaviour of filled rubbers. The similar 
model based on Prony series was implemented into ANSYS 10 [6] and the results of simulations are 
comparable with our ones.

Fig. 2. Time dependent displacement controled loading of rubber block



Fig. 3. Creep test Fig. 4. Relaxation test

4. Conclusion

The paper has presented the FEM implementation in Comsol Multiphysics of a  viscoelastic 
material model in finite strain in the Lagrangian configuration.  Simple examples were subsequently 
presented, namely the relaxation, creep and time dependent loading of a rubber block. The block was 
modelled using Structural Mechanics and PDE modules.
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